# FLEXIBLE PAVEMENT SYSTEM - SECOND GENERATION, INCORPORATING FATIGUE AND STOCHASTIC CONCEPTS

1

Ъy

Surendra Prakash Jain B. Frank McCullough W. Ronald Hudson

# Research Report Number 123-10

A System Analysis of Pavement Design and Research Implementation Research Study Number 1-8-69-123

conducted

In Cooperation with the U. S. Department of Transportation Federal Highway Administration

by the

Highway Design Division Research Section Texas Highway Department

> Texas Transportation Institute Texas A&M University

Center for Highway Research The University of Texas at Austin

December 1971

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Federal Highway Administration.

.

PREFACE

This report presents the Flexible Pavement System Second Generation for the design of flexible pavements incorporating fatigue theory, linear elastic layered theory, and stochastic concepts. In terms of elastic and fatigue material properties and their stochastic variations with both space and time, loading, and environmental conditions, new models to predict pavement performance are developed for distress manifestations such as cracking, rut depth, and roughness. The proposed models can be directly used for the design of flexible pavements and can also be included in the Flexible Pavement Systems Computer Program already developed for the Texas Highway Department.

This report is also meant to be a background document for further work to be done to include the effects of temperature and other stresses in the flexible pavement systems model.

This is one of the reports in a series that describe the work done by the Center for Highway Research in the project entitled "The Development of a Feasible Approach to Systematic Pavement Design and Research." The project proposes a long-range comprehensive research program to develop pavement systems analysis and is unusual in that it is a joint effort by three separate research agencies. The project is supported by the Texas Highway Department in cooperation with the Federal Highway Administration Department of Transportation.

The AASHO Road Test data were a very good source of information and were used extensively throughout the analysis in this report for verification of the proposed models. The computer programs were written for the CDC 6600 computer in FORTRAN language.

This report is a product of the continued assistance of many people. The entire staff of the Center for Highway Research at The University of Texas at Austin must be thanked for their cooperation and contributions. Thanks are due to Nancy Braun for her very valuable assistance in the computer programming.

iii

Finally, the support of the Federal Highway Administration and the Texas Highway Department is gratefully acknowledged.

Surendra Prakash Jain

B. Frank McCullough

W. Ronald Hudson

December 1971

4

7.9

1

4.4

.

### LIST OF REPORTS

Report No. 123-1, "A Systems Approach Applied to Pavement Design and Research," by W. Ronald Hudson, B. Frank McCullough, F. H. Scrivner, and James L. Brown, describes a long-range comprehensive research program to develop a pavement systems analysis and presents a working systems model for the design of flexible pavements.

Report No. 123-2, "A Recommended Texas Highway Department Pavement Design System Users Manual," by James L. Brown, Larry J. Buttler, and Hugo E. Orellana, is a manual of instructions to Texas Highway Department personnel for obtaining and processing data for flexible pavement design system.

Report No. 123-3, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," by Arthur W. Witt, III, and B. Frank McCullough, describes the results of a study of the swelling clay parameter used in pavement design system.

Report No. 123-4, "Developing A Pavement Feedback Data System," by R. C. G. Haas, describes the initial planning and development of a pavement feedback data system.

Report No. 123-5, "A Systems Analysis of Rigid Pavement Design," by Ramesh K. Kher, W. R. Hudson, and B. F. McCullough, describes the development of a working systems model for the design of rigid pavements.

Report No. 123-6, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," by F. H. Scrivner, C. H. Michalak, and W. M. Moore, describes a computer program which will serve as a subsystem of a future Flexible Pavement System founded on linear elastic theory.

Report No. 123-7, "Annual Report on Important 1970-71 Pavement Research Needs," by B. Frank McCullough, James L. Brown, W. Ronald Hudson, and F. H. Scrivner, describes a list of priority research items based on findings from use of the pavement design system.

Report No. 123-8, "A Sensitivity Analysis of Flexible Pavement System FPS2," by Ramesh K. Kher, B. Frank McCullough, and W. Ronald Hudson, describes the overall importance of this system, the relative importance of the variables of the system and recommendations for efficient use of the computer program.

Report No. 123-9, "Skid Resistance Considerations in the Flexible Pavement Design System," by David C. Steitle and B. Frank McCullough, describes skid resistance consideration in the Flexible Pavement System based on the testing of aggregates in the laboratory to predict field performance and presents a nomograph for the field engineer to use to eliminate aggregates which would not provide adequate skid resistance performance.

v

Report No. 123-10, "Flexible Pavement System - Second Generation, Incorporating Fatigue and Stochastic Concepts," by Surendra Prakash Jain, B. Frank McCullough, and W. Ronald Hudson, describes the development of new structural design models for the design of flexible pavement which will replace the empirical relationship used at present in flexible pavement systems to simulate the transformation between the input variables and performance of a pavement. ABSTRACT

Design of flexible pavement is a complex procedure involving numerous variables. The systems approach can be considered as the best method for solving design problems. An important part of any pavement design system involves upgrading it in order to include the best possible technology. One of the distress mechanisms included in the conceptual flexible pavement design system, as a part of the fracture failure mode, is fatigue of the pavement materials. Its consideration on some rational basis and stochastic variations of the material properties in space and time need particular attention in the development of a working systems model.

New structural design models, for the second generation of the flexible pavement system, based on linear elastic layered theory, fatigue theory, and probability theory, are presented. Probability theory is used for variation in material properties and fatigue life and for calculation of the cracking index, based on probability of damage. The new design models are proposed to replace the empirical relationship used at present to simulate the transformation between the input variables and performance of a pavement. The serviceability and performance concepts from the AASHO Road Test have also been utilized. The fatigue phenomenon is considered and the inputs of the system are correlated in terms of elastic and fatigue material properties and their stochastic variations, loading, environmental conditions, and compaction characteristics under repeated loading to the distress manifestations, such as cracking and rut depth. Based on AASHO Road Test data, a correlation between cracking and slope variance was developed. Thus, models are developed for the cracking index, rut depth index, and roughness index to predict the pavement performance and present serviceability index. Computer programs have been developed for these models to aid in the various stages of the design.

The models have been verified by comparing predicted performance with that observed at the AASHO Road Test for 28 sections. The models compare very well and predict the observed data within the acceptable accuracy. Results of the sensitivity analysis for the cracking index model are included. It is

vii

seen that the fatigue parameter B is the most significant and very sensitive variable and should be estimated very accurately.

Example problems are shown to compare the proposed models with the existing FPS models. The proposed design method shows various improvements and gives more realistic flexible pavement designs. A new rational procedure for an overlay design using damage theory is explained and is based on sound theoretical fundamentals. This is followed by a chapter on implementation of the proposed models for the flexible pavement system second generation. It is noted that the stress and strain calculations in the present analysis, by the direct use of the layered program, should be improved and replaced by a more efficient approach.

Conclusions have been based on the overall experience gained while working on this project. It is noted that only a few bonafide design procedures for flexible pavements exist at present and those in practice need improvements. The use of the proposed design procedure based on the theories discussed earlier give a new dimension to the flexible pavement design field. The characterization of material properties is a very important part of the whole design process and requires proper attention.

Recommendations have been made to aid planning of future work. The proposed design models are based on sound fundamentals, using the best stateof-the-art information, and are recommended for the design of flexible pavements and to be included in the pavement systems design computer programs already developed for the Texas Highway Department.

viii

### SUMMARY

New structural design models for the design of flexible pavement have been developed which will replace the empirical relationship used at present in flexible pavement systems to simulate the transformation between the input variables and performance of a pavement. Computer programs have been developed to quantify the distress manifestations, cracking, roughness, and rut depth in a pavement which are used to predict its performance. The models have been verified by comparing predicted performance with that observed at the AASHO Road Test. The overlay design procedure is improved and takes account of the damage to the existing pavement system.

The proposed method can be directly used for the design of flexible pavements and can also be included in the pavement system design computer program already developed for the Texas Highway Department for updating the system.

The development has the advantage of an immediate direct application and gives the background for further improvements in the existing design system.

ix

### IMPLEMENTATION STATEMENT

A separate chapter is included in this report discussing the details of implementation. The proposed structural design models can be used directly for the design of flexible pavements and can also be included in the existing FPS computer program.

The proposed method eliminates the present practice of expensive field measurements of material properties. The use of elastic constants, which are measured in the laboratory, can be more economical, convenient, and accurate. The laboratory measurements of elastic constants, tensile characteristics, and fatigue properties of pavement materials, are already in progress under a project at the Center for Highway Research at The University of Texas. Moreover, a computer program to calculate the elastic moduli of a two-layer system from measured surface deflection is already available and further work to complete the in-situ values of elastic moduli is in progress at Texas Transportation Institute, Texas A&M University. The proposed method has the new capability of predicting the nature of distress, i.e., cracking, roughness, and rutting, which cannot be done by any existing methods.

The proposed models can evaluate the effects of compaction, fatigue, and stochastic variations in material properties. The proposed models could also be used to give better evaluation of some of current black bases being proposed for pavements by the Texas Highway Department. The Flexible Pavement System FPS is already in use by several districts of the Texas Highway Department; hence, only a revised version of FPS, incorporating the proposed models, needs to be formulated. Thus, there is an excellent scope of the implementation of the proposed models in the near future without much efforts and organizational changes.

х

# TABLE OF CONTENTS

| PREFACE                                                                                               |
|-------------------------------------------------------------------------------------------------------|
| LIST OF REPORTS                                                                                       |
| ABSTRACT                                                                                              |
| SUMMARY ix                                                                                            |
| IMPLEMENTATION STATEMENT                                                                              |
| PART I. BACKGROUND                                                                                    |
| CHAPTER 1. INTRODUCTION                                                                               |
| Background 1   Objective 3   Scope 3                                                                  |
| CHAPTER 2. REVIEW OF EXISTING THEORIES AND FLEXIBLE PAVEMENT DESIGN<br>PROCEDURES                     |
| Existing Theories and Pavement Design Procedures                                                      |
| CHAPTER 3. DEVELOPMENT OF SECOND GENERATION FLEXIBLE PAVEMENT SYSTEMS                                 |
| Introduction                                                                                          |
| PART II. REVIEW OF AVAILABLE TECHNIQUES TO BE USED IN THE MODELS                                      |
| CHAPTER 4. FATIGUE OF PAVEMENT MATERIALS                                                              |
| Introduction to Fatigue26Asphaltic Concrete26Untreated Granular and Fine Grained Materials36Summary41 |

# CHAPTER 5. CHARACTERIZATION OF FLEXIBLE PAVEMENT MATERIALS

| Intro | oduc  | tior | ι.         |     |    | •   | • •           |     | ٠  | ٠  | ٠   | ٠     |    | •  | ٠   | ٠  | •  |    | •   | ٠   |     | •   | ٠  | ٠   |   | • | ٠ | • |   | 42 |
|-------|-------|------|------------|-----|----|-----|---------------|-----|----|----|-----|-------|----|----|-----|----|----|----|-----|-----|-----|-----|----|-----|---|---|---|---|---|----|
| Aspha | alti  | c Co | onc        | ret | te | •   | • •           |     | •  |    | •   | •     | •  | •  | •   |    |    |    |     | ٠   | •   | •   | •  | •   | • | • |   |   |   | 44 |
| Base  | and   | Sub  | b <b>a</b> | se  | Gr | ant | 1 <b>1a</b> : | r 1 | Ma | te | rie | a 1 s | 3  | •  | •   | •  | •  | •  |     |     |     |     | •  | •   | • | • | • | • | • | 47 |
| Chara | acte: | rize | ti         | on  | of | Sı  | ıbg           | rac | de | "  | Fir | ne    | Gı | ai | ine | ed | Сс | he | esi | Lve | 2 5 | loi | 15 | 311 | • |   |   |   | • | 56 |
| Summa | ary   | • •  | •          | •   | •  | •   |               | •   | •  | •  | •   | •     | •  |    | •   | •  | •  | •  | •   |     | •   | •   | •  | •   | • |   | • |   | • | 58 |

# CHAPTER 6. USE OF ELASTIC THEORY AND LAYERED ANALYSIS IN THE DESIGN OF FLEXIBLE PAVEMENTS

| Introduction                                  | . 61 |
|-----------------------------------------------|------|
| Behavior of Ideal Materials                   | . 62 |
| Comparison of Predicted and Observed Behavior | . 64 |
| Summary                                       | . 65 |

# PART III. DEVELOPMENT OF MODELS

# CHAPTER 7. DEVELOPMENT OF DISTRESS MODELS

.

-

| Ideal Distress Index Model             |   |   | • |   | • | • |   |   | • | • | • | • | • | • |   | 67 |
|----------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Development of Distress Index Model .  | • | • |   | • |   |   |   | • |   | • | • |   | • | • | ٠ | 69 |
| Quantification of Distress Index Model |   | • | • | • |   | • |   |   | • | • |   | • | • |   | • | 71 |
| Verification of Distress Index Models  | • | • | • |   |   |   | • | • |   | • |   | • | • |   |   | 72 |

### CHAPTER 8. DEVELOPMENT OF CRACKING INDEX MODEL

| Stochastic Concepts Applied to Cracking Index in Flexible |    |
|-----------------------------------------------------------|----|
| Pavements                                                 | 75 |
| Quantification of Cracking Index                          | 79 |
| Procedure for Modeling the Cracking Index                 | 84 |
| Computer Program                                          | 87 |

# CHAPTER 9. DEVELOPMENT OF RUT DEPTH INDEX MODEL

| Quantification of Rut Depth Index Model |   | • |   | • | • |   | • |   |   |   | • |   | • | • | 88 |
|-----------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Procedure to Compute the Rut Depth      | • | • | • | • | • | • |   | • | • | ٠ | • |   |   | • | 96 |
| Computer Program                        | , | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | • |   | • | 96 |

# CHAPTER 10. DEVELOPMENT OF ROUGHNESS INDEX MODEL

| Theory                                       |   | • | • • |   |   | • |   | • | ٠ | 98  |
|----------------------------------------------|---|---|-----|---|---|---|---|---|---|-----|
| Quantification of Roughness Index            |   | • |     |   |   | • |   |   |   | 101 |
| Selection of Model                           |   |   |     |   |   |   |   |   |   | 109 |
| Procedure for Computation of Roughness Index | Ī | - |     | Ī |   | - | - | Ţ | Ī | 110 |
| Computer Brogram                             | • | • | ••• | • | • | • | • | • | • | 110 |
|                                              | ٠ | • | • • | • | • | • | • | ٠ |   |     |

# CHAPTER 11. VERIFICATION OF DISTRESS MODELS

| Cracking Index Model                  | ٠ | ٠ | ٠ | ٠ | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | 113 |
|---------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Rut Depth Index Model                 | • | • | • | • |   | • | • | • | • | • | • | • | • | • | • | 120 |
| Verification of Roughness Index Model | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | 124 |
| Verification of the Performance Model | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 129 |

# PART IV. VERIFICATION AND PROPOSED USE OF MODELS

# CHAPTER 12. SENSITIVITY ANALYSIS

| Results   | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | 144 |
|-----------|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Observati | 01 | ns | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 152 |
| Summary   | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | 156 |

# CHAPTER 13. SUMMARY OF PROPOSED FATIGUE MODEL

| Proposed Fatigue Model                                       | • • | • • | 157 |
|--------------------------------------------------------------|-----|-----|-----|
| Proposed FPS Second Generation                               | •   |     | 160 |
| Example Problem - Comparison of the Present FPS and Proposed |     |     |     |
| Fatigue Models                                               | • • | •   | 163 |

# CHAPTER 14. IMPLEMENTATION

| Stress and Strain Computations                                |
|---------------------------------------------------------------|
| Overlay Design                                                |
| Repeated Load-Deformation Data                                |
| Equivalencies                                                 |
| Present Serviceability Index                                  |
| Traffic Computations                                          |
| Time Subroutine                                               |
| Laboratory Investigations                                     |
| Limitations for Surface Treatment and Thin Asphaltic Concrete |
| Surfaces                                                      |
| Prediction Errors in the Models 176                           |

# PART V. CLOSURE

CHAPTER 15. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

| Summar<br>Conclu<br>Recomm | y<br>sic<br>enc | ons<br>lat | •<br>tic | ons | 5 | •<br>•<br>• | •<br>•<br>• | • | •<br>•<br>• | •<br>•<br>• | •<br>• | • | •<br>• | •<br>•<br>• | •<br>•<br>• | •<br>•<br>• | •<br>• | •<br>• | •<br>• | •<br>• | •<br>• | • | •<br>• | •<br>•<br>• | •<br>• | •<br>• | • | •<br>•<br>• | •<br>• | •<br>•<br>• | •<br>•<br>• | 178<br>179<br>180 |
|----------------------------|-----------------|------------|----------|-----|---|-------------|-------------|---|-------------|-------------|--------|---|--------|-------------|-------------|-------------|--------|--------|--------|--------|--------|---|--------|-------------|--------|--------|---|-------------|--------|-------------|-------------|-------------------|
| REFERENCES                 | •               | •          | •        | •   | • | •           | •           | • | •           | •           |        | • | •      | •           | •           | •           | •      | •      | •      | •      | •      | • | •      | •           | •      | •      | • | •           | •      | •           | •           | 182               |

# APPENDICES

İΨ

| Appendix 1. Summary of Research Needs, Advisory Committee,<br>HRB Workshop on Structural Design of Asphalt<br>Concrete Pavement Systems Held in Austin, |   |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| Texas, December 7-10, 1970 (Ref 63)                                                                                                                     |   | 200 |
| Appendix 2. Details of Material Characterization                                                                                                        | • | 206 |
| Appendix 3. Outline of Computer Program Available for                                                                                                   |   |     |
| Analysis of Stresses, Strains, and Displace-                                                                                                            |   |     |
| ments in a Five-Layered Elastic System Under                                                                                                            |   |     |
| a Load Uniformly Distributed on a Circular                                                                                                              |   |     |
| Area                                                                                                                                                    | • | 242 |
| Appendix 4. Computer Program and Analysis                                                                                                               |   |     |
| Appendix 4.1. Flow Chart                                                                                                                                | • | 248 |
| Appendix 4.2. Listing of Computer Program for Cracking                                                                                                  |   |     |
| Index and Rut Depth Index                                                                                                                               | • | 255 |
| Appendix 4.3. Guide for Data Input                                                                                                                      | • | 272 |
| Appendix 4.4. Input Data Sample                                                                                                                         | • | 277 |
| Appendix 4.5. Cracking Index and Rut Depth Index                                                                                                        |   |     |
| Example Problem                                                                                                                                         | • | 279 |
| Appendix 4.6. Regression Analysis for Cracking-Patching                                                                                                 |   |     |
| Versus Roughness Index                                                                                                                                  | • | 286 |
| Appendix 4.7. Computer Program and Calculated Values of                                                                                                 |   |     |
| Roughness Index and Present Serviceability                                                                                                              |   |     |
| Index                                                                                                                                                   | • | 298 |
| Appendix 5. Flexible Pavement Performance Record                                                                                                        | • | 302 |
| Appendix 6. Nomenclature                                                                                                                                | • | 305 |
| Appendix 7. AASHO Road Test and Present Serviceability Concept .                                                                                        | • | 309 |
| Appendix 8. Comparison of Distress Models - Plots                                                                                                       | • | 314 |
| Appendix 9. Computer Input and Output for Example Problems                                                                                              | • | 335 |
|                                                                                                                                                         |   |     |
|                                                                                                                                                         |   |     |
| THE AUTHORS                                                                                                                                             | • | 343 |

xiv

PART I

.

ŝ

۰,

BACKGROUND

#### CHAPTER 1. INTRODUCTION

### BACKGROUND

The design of flexible pavements requires knowledge of complex structural systems. Many variables are involved, including the behavior of soils and paving materials, combinations of static and dynamic loading, and different environmental and climatic conditions. Early design procedures for flexible pavements were primarily rule-of-thumb. In time, many empirical and semiempirical methods of design were developed. The empirical nature of the methods is due in part to limited knowledge of the behavior of materials and of actual failure mechanisms and in part to the limitations of analytical techniques in handling the complex mathematical functions required.

The inability to predict pavement performance under certain conditions with any existing design method has been due to the manner in which design procedures were developed; a particular development was applicable only within certain limited geographic boundaries and suitable only for the characteristics of available materials, environmental conditions, and traffic loads within these boundaries.

Therefore, a more rational method of pavement design was needed, one which could predict the performance of a pavement under various sets of conditions. Such a method may be organized within the framework of the "systems approach" and must consider various variables, including physical, social, and economic. A project which proposed a long-range comprehensive research program to develop a pavement system analysis, "The Development of a Feasible Approach to Systematic Pavement Design and Research," was initiated in December 1968 by the Texas Highway Department, the Center for Highway Research at The University of Texas at Austin, and the Texas Transportation Institute at Texas A&M University, under the Cooperative Highway Research Program. Under this project, now entitled "Systematic Pavement Design," a computer program based on the systems approach and known as the Flexible Pavement Systems or FPS was developed for the design of flexible pavements (Ref 81). A general description of FPS and its development is given in Chapter 2. The basic models used

in FPS were obtained from Research Report 32-11 (Ref 162), which was the outgrowth of an attempt to apply the AASHO Road Test results to Texas conditions. More than 50 physical inputs and constraints are used in the FPS models and the output is a set of recommended pavement design strategies based on the present net worth of the lowest total cost. Total cost consists of initial construction, maintenance, overlays, users, seal coat, and salvage costs. The approach gives the designer considerably expanded scope and flexibility in exploring design options.

The performance subsystem, which is only a part of the whole flexible pavement systems model, uses the empirical relationship between the input variables and the pavement performance. A performance history is obtained from the prediction of present serviceability index (Ref 158), and failure of the system is evaluated in terms of minimum serviceability level and the total cost of the system. However, the present serviceability index is not obtained from the actual distress manifestations, i.e., magnitude of cracking, patching, roughness, and rut depth, but simply from some function of their combined values. This function, which was statistically derived from the AASHO Road Test data, is assumed to represent the present serviceability index at any The use of these empirical relationships, for materials not used at the time. AASHO Road Test, different environmental conditions, locations outside the limited boundaries, and with passage of time resulting in revision of the standards of safety and comfort, is questionable. In spite of all the technological developments and the theoretical background available in the present state-of-the-art for the design of flexible pavements, no existing design procedure, including FPS, can predict quantitatively the distress manifestations, such as cracking, rut depth, and roughness, which will appear in a pavement during its performance period. The distress mechanisms which are considered in the systems design approach for flexible pavements include, as a part of the fracture failure mode, fatigue of pavement materials. Fatigue plays an important role in the design of a pavement structure and its complete consideration on some rational basis is particularly important in the development of a working system model. Stochastic variations of material properties with space and time also need to be taken into account in a realistic design approach. Proper application and use of elastic layered theories need inves-The problem of computation of permanent deformation should be anatigation. lyzed. No rational overlay design procedure which is operational considers

the actual damaged and consolidated condition of the pavement at the time of an overlay.

#### OBJECTIVE

The general objective of this study is to upgrade the existing flexible pavement systems by attacking the problems of computing fatigue cracking, permanent deformation, and roughness and developing new structural design models. As discussed in the previous section, no existing pavement design method can predict, or attempts to, the condition of failure in a pavement at the end of the design period. In simple terms the main objective of the proposed developments is to quantify the distress manifestations in a pavement system in order to predict its performance and failure conditions. Inclusion of these new models in the performance subsystem of the existing flexible pavement systems, with necessary revision in the physical models (structural design models), will assist in the development of a second generation flexible pavement systems design model.

### SCOPE

The approach described herein utilizes a theory of linearly elastic layers which is commonly termed "layered theory." It takes into account the fatigue behavior of the materials and their stochastic variations with space and time. The probability concept in the output of the system is considered in the analysis. The serviceability-performance concept of the AASHO Road Test has also been used. With the fatigue phenomenon considered, the inputs of the system are correlated to its distress manifestations, such as cracking and rut depth. Based on AASHO Road Test data, a correlation between cracking and the roughness index of the pavement is developed. Thus models for the cracking index, roughness index, and rut depth index are developed to predict the pavement performance and present serviceability index. The models are verified with AASHO Road Test data and example problems which predict the performance within the acceptable accuracy. These new models can be used directly for the design of flexible pavement and can also be included in the design computer programs for flexible pavement systems already developed for the Texas Highway Department.

This report is divided into five parts, each consisting of several chapters. Part I, the first three chapters, covers background material. Chapter 2 reviews existing theories and methods of flexible pavement design along with their limitations and contains a description of the flexible pavement system. Chapter 3 briefly gives background data on development of the proposed design procedure.

Part II, Chapters 4 through 6, reviews techniques used in development of the models proposed for the design of flexible pavements. Chapter 4 summarizes the concept of fatigue and its application to the design of flexible pavements. Chapter 5 contains a discussion on the characterization of materials and stochastic variations; the procedure for characterizing material properties, including the AASHO Road Test materials, is explained in detail. Chapter 6 explains the use of elastic theory and layered analysis in the design of flexible pavements.

Part III consists of Chapters 7 through 10, which describe the development of distress models for quantification of total distress index, cracking index, rut depth index, and roughness index, respectively.

Part IV, Chapters 11 through 14, is devoted to verifying the developed models with the AASHO Road Test data and describes the use of the proposed procedure. Chapter 11 contains the verification of the distress models developed in Chapters 7 through 10. Chapter 12 summarizes the results of a small sensitivity analysis of the parameters in the cracking index model and establishes a format for a proposed detailed sensitivity study. Chapter 13 summarizes the proposed fatigue models, contains example problems, and compares the present FPS with the proposed fatigue procedure. This chapter also describes the revision of the present FPS model. Chapter 14 is devoted to implementation.

Part V, Chapter 15, is the summary, conclusions, and recommendations.

# CHAPTER 2. REVIEW OF EXISTING THEORIES AND FLEXIBLE PAVEMENT DESIGN PROCEDURES

# EXISTING THEORIES AND PAVEMENT DESIGN PROCEDURES

Flexible pavement design procedures in the beginning were primarily "rules-of-thumb," i.e., procedures based on past experience. During the period between the first and second World Wars, engineers made concerted efforts to evaluate pavement performance and plate theory, and some rational methods for the design of rigid pavements were developed. Efforts to evaluate the structural properties of subgrade soil and to classify soils for use in correlating pavement performance with subgrade type also continued. The limitations to obtaining successful and satisfactory results were partly due to the limited knowledge of the behavior of materials and appropriate failure mechanisms and in part to the limited analytical solution techniques available for the complex functions required. Application of Boussinesq's theory of stresses in ideal masses was developed in 1883, but it was not until 1943 that Burmister first put forward his layered theory for two layers and conceptually presented the solution for three-layered system, giving some rational basis for the design of flexible pavements (Ref 14).

With the advent of World War II, the U. S. Army Corps of Engineers initiated a study of design methods that eventually led to the CBR design method. Following World War II, many state highway departments also started studies to develop pavement design procedures. Many independent design procedures were developed, based on various soil tests that were correlated with pavement performance, environmental considerations, experience, and theories, and at the present time numerous design procedures are in use.

Over the years, several road tests (Table 2.1) have provided a wealth of experimental data and observations. The AASHO Road Test, which cost about \$30 million, was one of the most successful. One of the major objectives of the AASHO Road Test was to provide information which would be used in developing pavement design criteria and design procedures.

| Road Test Name                         | Year            | Agency             | Pavement Type      |
|----------------------------------------|-----------------|--------------------|--------------------|
| Arlington Test<br>(Virginia)           | 1919            | BPR                | flexible and rigid |
| Bates Road Test<br>(Illinois)          | 1920-23         | BPR                | flexible and rigid |
| Pittsburgh Road Test<br>(California)   | <b>1930-4</b> 0 | Columbia Steel Co. | rigid              |
| Stockton Road Track<br>(California)    | 1930-40         | Corps of Engineers | flexible           |
| Hybla Valley<br>(Alexandria, Virginia) | 1944-54         | HRB, AI, BPR       | flexible           |
| Maryland Road Test<br>(Maryland)       | 1950-51         | AASHO              | rigid              |
| WASHO Road Test<br>(Idaho)             | 1952-53         | WASHO              | flexible           |
| AASHO Road Test<br>(Illinois)          | 1958-61         | AASHO              | flexible and rigid |

- BPR Bureau of Public Roads
- HRB Highway Research Board
- AI Asphalt Institute

١.

- AASHO American Association of State Highway Officials
- WASHO Western Association of State Highway Officials

The Committee on Theory of Pavement Design of the Highway Research Board recently prepared a review of existing theories and methods of pavement design (Ref 183). In their report, the design procedures are grouped under the following headings:

- (1) elasticity methods,
- (2) ultimate strength methods,
- (3) semi-empirical and statistical methods, and
- (4) empirical and environmental methods.

The elasticity methods are based on the criterion of limited stresses or strains as determined by calculations based on the theory of elasticity for certain values established empirically as safe. The ultimate strength method assumes that a pavement possesses an adequate safety factor against an assumed shear failure of the pavement system. The semi-empirical and statistical methods are based on studies of observed field behavior, followed by statistical analysis of data to correlate performance and other design factors involved. In the empirical and environmental methods, the pavement is designed based on soil classifications and environmental conditions. It can be seen that the bases for these four methods are quite limited in scope, and none of the methods can predict the actual distress manifestations during and at the end of the design life.

Methods based on systems approach, which can be considered the latest and best available, are discussed separately in more detail for the following reasons:

- to give background information for development of the new models developed in this dissertation;
- (2) to show the lack of a rational basis and the improvements needed; and
- (3) because the new design models developed in this dissertation, when included in the existing flexible pavement systems (FPS), will lead to the flexible pavement system - second generation.

### EXISTING FLEXIBLE PAVEMENT SYSTEMS MODELS

It is practically impossible to describe completely pavement behavior with a single equation or model. To define this behavior and solve the problem of pavement design, a systems approach is required. It is a framework within which the multitude of physical and socio-economic variables involved can be sorted out and related in a meaningful way. For this study, systems approach is defined as a systematic way of approaching, modeling, and solving a problem, utilizing available manpower, money, material, and time in the best possible way.

A 1967 NCHRP project led to the first work applying systems engineering to pavement design (Ref 78). In a similar but independent effort, Hutchinson and Haas (Ref 82) applied the systems approach to structuring the overall problem and several of the subsystems design problems. A phase development and description of the pavement systems is fully presented in Ref 81. The systems approach was recognized as the most logical by a large number of pavement design engineers at the Highway Research Board Workshop on Structural Design of Asphaltic Concrete Pavements at Austin, Texas, December 1970.

### Development of Existing Flexible Pavement System

Two systems models for the design of flexible pavements, one based on deflection and the other on structural number, have recently been developed for the Texas Highway Department under the Cooperative Research Program (Ref 81). The primary purpose of the existing flexible pavement systems method was to provide the designer with a means for investigating a large variety of pavement design options in a systematic and efficient manner. It was not intended to replace a designer's decision-making prerogative, but rather to give him increased scope and flexibility (Ref 81).

The mathematical models developed for FPS are based on the established objective of providing from available materials a pavement capable of being maintained above a specific level of serviceability over a specified period of time, at a minimum overall cost. The computer program was written to provide an output of feasible pavement designs sorted by increasing total cost, to help the designer or decision-maker to make his choice as quickly and easily as possible (Ref 81).

### Inputs and General Description of FPS (Ref 81)

Each of the two FPS models consists of a set of mathematical models that may be broken down into four types: (1) physical, (2) economic, (3) optimization, and (4) interaction.

A large number of input variables are considered in FPS to simulate the total pavement design approach as closely as possible.

<u>Physical Models</u>. These are simulations of the real-world performance of a pavement during the analysis period. Traffic models predict the traffic during the analysis and performance periods; environmental models take into account environmental conditions, considering temperature, regional factor, and swelling clay parameters; performance models predict the behavior of the pavement, based on the present serviceability index (PSI) concept developed at the AASHO Road Test, and include a pavement strength model based on either (1) surface curvature index (SCI) or deflection model (Ref 162), or (2) structural number and soil support models from the AASHO Road Test.

In the deflection model, the material in each layer is characterized by a stiffness coefficient which is entirely different from the structural number coefficients in the AASHO Interim Guides. The stiffness coefficient values for different materials are based on field measurements of pavement deflection.

The structural number model is based on the structural number and soil support parameters developed at the AASHO Road Test. Using the information from the AASHO Road Test, the AASHO Committee on Pavement Design developed a design method that was issued in the form of Interim Design Guides (Refs 64 and 65) in 1962. It was emphasized that the design guides were interim in nature and subject to adjustment based on experience and additional research. It was noted that careful consideration was required to assign strength coefficient values to materials not used at the Road Test. The design equations were derived for

- (1) a specific set of paving materials,
- (2) a single environment,
- (3) an accelerated traffic period (two years compared to a normal design period of 20 years), and
- (4) identical traffic (mixed traffic was not applied).

Though the Interim Guides approach is sound in that it recognizes the importance of soil support, traffic load applications, and climatic conditions, however, the problem is to quantify the effects of all these factors on some rational basis. In spite of large variability, certain weighted average values have been considered as constants and are used as the coefficients of relative strength in the pavement design procedure of the Interim Guide. The term "coefficients of relative strength" is misleading as these are essentially the regression coefficients in the structural number of thickness index equations and supposedly represent some material characteristics. The values of 0.44, 0.14, and 0.11 represent weighted averages of coefficients of relative strength  $a_1$ ,  $a_2$ , and  $a_3$  determined from an analysis of performance and design (Ref 70). Actually these coefficients in the analysis varied from 0.83 to 0.33, 0.25 to 0.11, and 0.11 to 0.09, respectively. It is difficult, therefore, to consider the design performance relationships of AASHO as exact. To establish coefficients of relative strength for any other material as constants is also very difficult. Though it was appreciated and pointed out that these coefficients were related to the physical properties of the materials, no definite formulation was offered for the correct properties. Different agencies have made efforts to predict the correct values of these coefficients through correlations with CBR, cohesiometer values, and Marshal stability, but these correlations are also empirical.

In NCHRP Project 1-11 (Ref 117), a method was developed for selecting the structural coefficients based on layered elastic theory. Vertical compressive strain on the subgrade, surface deflection, and tensile strain of the asphaltic concrete were selected as the criteria to establish structural layer equivalency. It was shown that the equivalencies can vary according to various geometric environment and loading conditions and that several assumptions were required to account for these conditions. Charts were developed in terms of selected material properties, but these are also only approximate.

Even such a major effort as the AASHO Road Test could produce only an interim design guide, subject to adjustment based on experience and additional research.

NCHRP Project 1-11 (Ref 117) was conceived to evaluate the various techniques used and the results obtained by the individual states after applying the guides to pavement structure design. This information was collected from the various states and the results were summarized (Table 1 of Ref 117). The importance of the AASHO Interim Guides is apparent from its use by about 32 states. They are being widely used, partly because of the unavailability of any other, better, and more rational design procedure.

<u>Economic Models</u>. Economic models are used to determine the total cost of a design as well as a breakdown of the cost. All costs are converted to present value at appropriate interest rates which are supplied by the user. The present value represents the amount of money which would, if invested at the

present time, generate funds to accomplish the design scheme as specified. There are seven types of economic models used in FPS.

- initial construction cost model, which determines the cost of the initial construction based on the cost per compacted cubic yard of each material used;
- (2) seal coat cost model, which calculates the present cost of the seal coats required during the performance period;
- (3) overlay construction cost model, which together with a physical model determines when and how much to overlay as well as the cost;
- (4) routine maintenance model, which predicts the cost of routine maintenance based on the optimum overlay and seal coat schedules
- (5) user's cost model, which determines the cost to the user due to traffic delays during overlay construction;
- (6) salvage value model, which determines the value of the pavement remaining at the end of the analysis period; and
- (7) total overall cost model, which relates all costs during the analysis period to their present value at the beginning of the period.

<u>Optimization Models</u>. The two optimization models used in FPS to determine a set of optimal designs, based on overall cost, are

- modified branch and bound technique, which systematically determines which initial construction designs will lead to a set of optimal designs.
- (2) determination of the optimal overlay policy for each initial design, considering all possible policies.

<u>Interaction Models</u>. An interaction model is an algorithm which defines the interactions between two or more other models. For example, in finding the life of initial and overlay construction designs, a time must be determined which will satisfy both performance and traffic models. Because of the complexity of these models, it is necessary to use an iterative technique.

Design Flow Chart of FPS. A design flow chart for the deflection version, FPS2, is shown in Fig 2.1. The flow chart for the structural number version of FPS is similar except for a few changes in the list of parameters. This chart shows all parameters involved in the various models of FPS2. The design strategies consist of schedules giving optimal cost, pavement life, overlays, material arrangement and thickness, and seal coat. Each schedule is calculated by consideration of the various parameters, shown in boxes. From the flow



N T FPS-2 DESIGN FLOW CHART

chart, it can be seen that the program involves a large number of variables (the number of inputs into the program is  $\overline{6n + 44}$ , where n is the number of materials considered for use above the foundation) which are intercorrelated in a complex optimization technique.

#### CHAPTER 3. DEVELOPMENT OF SECOND GENERATION FLEXIBLE PAVEMENT SYSTEMS

### INTRODUCTION

The review of existing theories and various design procedures for flexible pavements in Chapter 2 showed the diversity and lack of rational basis for some present design procedures and the need for development of an improved design procedure.

The two existing flexible pavement systems models were also discussed in Chapter 2. A detailed evaluation of the FPS models in this chapter will show the need for updating and improving these models. Improved and updated structural design models, based on proper fatigue and stochastic considerations, are developed later in this report. These structural design models technically would fit into both existing FPS computer programs.

A basic work plan outlined in this chapter for the fatigue subsystem establishes the format of work plans for other areas, such as temperature stresses and stochastic variations in input design variables, which will be included in the existing FPS models at the appropriate stages.

## EVALUATION OF THE EXISTING MODELS

Performance of a pavement is a measure of the accumulated service it provides and a function of the present serviceability history of the pavement, according to the AASHO concept of present serviceability index (PSI). The distress mechanism is the response which can lead to some form of distress when carried to a limit. Figure 3.1 shows the categories and examples of distress mechanisms in the pavement system.

Literature review shows that the best means presently available to account for all the distress modes in a pavement in the three categories shown in Fig 3.1 is the present serviceability index dquation developed at the AASHO Road Test (Ref 70). The roughness in the AASHO Road Test (Eq A7.1) is a function of distortion and disintegration modes. The cracking and patching terms are related to all three distress modes, and rut depth is a function of distortion mode only (Ref 78).



Fig 3.1. Categories of pavement distress (After Ref 78).

The FPS models (Ref 81) utilize the AASHO concept of pavement performance and are based on field results from AASHO Road Test and Texas Transportation Institute (Ref 158) test sections. The FPS also incorporated many variables to select a best and most economical design. Therefore, the FPS models represented the latest and best available design procedures. Though an effort was made to include as many factors from Fig 3.2 as the present state-of-the-art would permit, many factors still required improvements and considerations, as discussed below.

One of the distress mechanisms included in the systems approach for pavement design as a part of the failure mode is the fatigue of pavement materials (Fig 3.2). Fatigue plays a very important role in the design of a pavement structure and it should receive particular attention in the development of a working systems design model. This important mode of failure has not been given complete consideration in FPS, although the number of repetitions of axle load in FPS considers some kind of fatigue mode. The number of repetitions N , however, are related to PSI only empirically without any theoretical basis and without consideration of actual fatigue behavior of materials under repeated stress and strain. Fatigue theory, as it applies to the new design procedure, is discussed in detail in Chapter 4.

In the deflection model of the FPS, the materials in each layer are characterized by a stiffness coefficient, but no way has been found for defining or predicting the values of these coefficients from laboratory tests with suitable accuracy. These must be estimated from deflection measurements made on the same type of material on an existing pavement located in the same general area as the planned facility. The accuracy of the prediction of these coefficients by this method for the other materials is doubtful. In the AASHO model, the values of strength coefficients are empirical and, as discussed in Chapter 2, cannot be determined accurately by any available test method.

In the present FPS, the history of change in material properties during the lifetime of the pavement is not taken into account. At the time of an overlay, the material thicknesses and their original strength coefficients are assumed.

Structural number SN or surface curvature index SCI (Ref 81) are directly related to present serviceability index PSI without consideration of the stresses and distress in individual layers. Sections with the same SN or



.

.

.

Fig 3.2. Conceptual pavement design system.

.

SCI are assumed to behave in the same way, irrespective of different combinations of thicknesses.

These methods use either strength coefficients or structural numbers; but neither strength coefficients nor structural numbers can be correctly defined nor assigned units, nor can their values be accurately predicted from laboratory tests.

Engineers working with materials recognize that the properties of materials in a specimen vary considerably from point to point and from time to time. These variations are certain to occur in a pavement structure also. Although these variations are recognized from a practical standpoint, the FPS or any other current design procedures do not take this variation into account directly.

In the present FPS model, as shown in Fig 3.3, the material properties, loading conditions, axle applications, and environmental conditions as input are related to the output, i.e., PSI, only empirically. Some rational and theoretical basis is needed for correlating the above factors. Different distress manifestations are not quantified separately.

The swelling clay parameters in the present FPS are very empirical in nature and need to be quantified on some theoretical basis.

### PROPOSED REVISION OF FPS

Based on some noted discrepancies of FPS design methods and other factors discussed herein, a revision to the existing FPS is presented.

# Factors to be Considered in the Design of Flexible Pavements

The design of flexible pavement requires consideration of several complex and interrelated factors. The conceptual pavement design system shown in Fig 3.2 details the inputs to the system, the different models needed, the predictions they provide, and the output from the system. It also includes the decision criteria and gives steps in selection of a best design. In the revision of the FPS, consideration of this conceptual pavement system is very important to assure that as many factors are included as the state-of-the-art permits.

Based on the work of Barksdale and Leonards (Ref 6) and other available literature, it appears that the following factors are those most important for the design of flexible pavements.







(b) Proposed FPS Model-Second Generation

 $N_i$ =Number of Single axle applications of ith load group  $N_{18}$ = Number of Equivalent 18 kip axle Applications  $A_i$ = Structural Number or Strength Coefficent in AASHO & Deflection Model  $D_i$ = Thickness of the Pavement Layers  $E_i$ = Modulus Values of the Pavement Materials  $\mu_i$ = Poisson's Ratio a = Daily Temperature Constant t= Time since Initial Construction

etm=Environmental Effect of Temperature & Moisture Content

20

Fig 3.3. Present FPS model and proposed FPS second generation.

- Cracking and/or rutting due to stress and strain from wheel loads (Ref 6).
- (2) Fatigue failure in the surface materials due to repeated flexing induced by elastic deformations in the underlying components of the pavement. Cracking of the surface materials can lead to deterioration of the entire pavement due to the resulting increase in transmitted stresses (Ref 6).
- (3) Cracking and rutting of the surface material due to shear displacement and/or compaction of the base and subbase. Compaction of base materials generally leads to increased stability. Patching and resurfacing will restore the pavement, and further deterioration due to this cause is likely to be relatively minor. In any case, improved methods of compacting granular materials in the field and use of stabilized bases have reduced the occurrence of this defect (Ref 6).
- (4) A general (punching) shear failure due to inadequate shear strength of the subgrade. Such failures occur rapidly under the action of a few heavy wheel loads and damage the pavement severely. A large increase in water content, due to frost action, for example, may lower the strength of the subgrade excessively. Proper subgrade sample analysis may help to avoid this type of failure (Ref 6).
- (5) Cracking and rutting due to cumulative permanent deformation of the subgrade, base, and subbase layers which increases with increased stresses, traffic volume, and time (Ref 6).
- (6) Aftereffects of cracking and rutting in the form of surface roughness or slope variance.
- (7) Surface cracking due to extreme temperature variations.
- (8) Other environmental effects, including the effects of foundations movements, swelling clays, asphalt oxidation, and change in support conditions.
- (9) Effects due to stochastic variations in the material properties with space and time.

### Extent to Which the Above Factors Are Considered at Present

On the basis of current theories, the ultimate strength methods discussed in Chapter 2 consider failure mechanisms (1) and (4) above. Layered theory can be utilized to calculate the stress and strain in the pavement layers to avoid failure mechanisms (1) through (5). However, none of the present procedures considered all the failure mechanisms (1) through (5). No theoretical approach is available to quantify the roughness of the pavement stated in item (6) above, other than the actual measurement of this distress on the pavements under consideration. Quantification of this distress by any theoretical means is open for future research. In this report, the surface roughness has been quantified by statistical analysis based on field data. Though a great deal of work has been done for items (7), (8), and (9) and there are several ways to get qualitative information as to their effect on pavement, no quantitative and rational procedure is available which considers them in pavement performance.

### SCOPE OF THE PRESENT REPORT

The proposed models for the design of flexible pavements developed in this dissertation utilize linear elastic layered theory, fatigue theory, and probability theory. Based on these theories and concepts as shown in Fig 3.3, factors (1) through (6) have been quantified on a more rational and theoretical basis. Factor (9) has been considered. The strength and stiffness coefficients of FPS are replaced by more realistic measurable properties, i.e., moduli of materials.

Considering the fatigue phenomenon, the systems input are correlated, in terms of measurable material properties, loading, and environmental conditions, to its distress manifestations, such as cracking and rut depth. Based on AASHO Road Test data, the correlation between cracking and roughness index is developed. The serviceability and performance concept of the AASHO Road Test has also been utilized. Thus, models are developed for distress manifestations to predict pavement performance and present serviceability index. The models have been verified with the AASHO Road Test data. In the present report, theoretical and empirical approaches have been combined to give the best design procedure possible within the present state-of-the-art.

In the revision of the FPS models, the new design models will replace the empirical relationship used at present to simulate the transformation between the input variables and performance of a pavement as shown in Fig 3.3. This revision will lead to the second-generation FPS. To develop secondgeneration FPS, the existing structural models for traffic load applications are replaced by the proposed design models, and existing economic and other models are used to study the various design strategies and obtain the best alternative design. The replacement of the existing FPS structural models for fatigue is explained in the following paragraphs.

The present serviceability index (PSI) of a pavement can be conceptually represented as

PSI = f[fatigue (traffic load applications), swelling clay, temperature stresses] (3.1)
For the second-generation FPS, the first term on the right of Eq 3.1 is quantified in this dissertation by improved performance and distress index models to replace the existing FPS structural performance model for traffic applications. The FPS swelling clay performance equation remains unchanged, but further improvements (Ref 187) in the models need to be investigated.

The last term of Eq 3.1, representing the deterioration in PSI due to major temperature stresses, is not presently considered in the FPS. Research on this item is in progress at the Center for Highway Research. The models developed for temperature stresses are planned for the second-generation FPS.

The existing FPS performance equation includes traffic and swelling clay parameters as given in Eq 3.2 (Ref 113).

$$P = 5 - \left[\sqrt{5 - P_{k-1}} + \frac{\beta S_k^2}{\overline{\alpha}} (N - N_{k-1})\right]^2 - 0.335 C_1 C_2 \left[e^{-\theta t_{k-1}} - e^{-\theta t}\right] (3.2)$$

where

- P = the present serviceability index at time t , $<math>P_{K-1} = the present serviceability index at time t_{k-1}$ ,
- $\beta$  = a constant = 53.6,
- $S_v$  = the surface curvature index for  $K^{th}$  performance period,
- N = the number of 18-kip equivalent load applications adjusted by the risk factors to give an acceptable confidence limit at time t ,
- N<sub>K-1</sub> = the number of 18-kip equivalent load applications at the confidence level which occurred at the end of the (K 1)<sup>th</sup> performance period,
- $\overline{\alpha}$  = a temperature constant which varies geographically,
- C<sub>1</sub> = the fraction of a roadway length that has expansive clay in locations that are likely to promote volume change,
- C<sub>2</sub> = the maximum amount of differential heave that is likely to be noted along a roadway,
- $\theta$  = a constant which determines the rate of heaving of the expansive clay.

$$N = \frac{N_c}{C_L(\gamma_c + \gamma_o)} \left[ 2\gamma_o t + \frac{\gamma_c - \gamma_o}{C_L} t^2 \right]$$
(3.3)

where

- N = the number of accumulated 18-kip equivalent load applications during the analysis period adjusted by the risk factor to give an acceptable confidence limit,
- $C_{\tau}$  = analysis period in years,
- $\gamma_{2}$  = average daily traffic at the beginning of the analysis period,

 $\gamma_c$  = average daily traffic at the end of the analysis period.

The underlined portion of Eq 3.2 represents the terminal PSI due to traffic load applications, and the other portion represents loss in the PSI due to swelling clay.

In the proposed models, the underlined portion of the existing FPS is replaced by the performance model developed in Chapter 7 (Eq 7.5) and distress index models developed in Chapters 8 to 10 (Eqs 8.7, 9.1, and 10.15). Based on values of distress indices computed from distress index models, the present serviceability index is obtained from the performance model (Eq 7.5). The PSI thus obtained is substituted for the underlined portion of Eq 3.2 and the final PSI is computed by subtracting the loss in PSI due to swelling clay. The distress index models and therefore the proposed performance model, as detailed in Chapters 7 to 10, is a function of several parameters, such as traffic load, actual number of traffic applications each month, the month in which the facility is opened for traffic, total time, several material properties and their stochastic variations, confidence level, deformation characteristics of materials, and environmental conditions, as compared to the factors in the existing FPS shown in the underlined portion of Eq 3.2.

The proposed procedure utilizes the actual load repetitions each month for each load group, instead of only one 18-kip equivalent load group. The traffic load repetitions  $N_{jt}$  for t<sup>th</sup> month for j<sup>th</sup> load group separately can be computed from Eq 3.4 if the traffic growth rate  $\gamma_j$  and initial traffic repetitions  $N_j$  of a load of level j are known:

$$N_{jt} = N_{j} (1 + \gamma_{j})^{t}$$
(3.4)

However, if desired, with modification in the proposed procedure, Eq 3.3 can also be utilized for traffic computations.

#### Work on Items Not Covered in the Present Report

This report covers only a part of the whole work required to idealize the FPS models and continued research efforts are being made by various agencies and individuals (Ref 81) in this direction. Even for the second generation of FPS, further efforts are required and M. Y. Shahin and M. I. Darter, both of the Center for Highway Research, The University of Texas at Austin, are working to quantify the effects of surface cracking due to extreme temperature variations and stochastics for other variables not considered in this report, which will also be included in the second generation of FPS.

At present, the effects of foundation movements, asphalt oxidation, change in support conditions, etc., still need to be taken into account on some rational and theoretical bases and are fields open for further research.

## BASIC WORK PLAN

The structural design procedure based primarily on fatigue and stochastic concepts and developed in this report can be considered as a subsystem of the whole "systems of pavement analysis, design, and management" or the "ideal pavement systems design" model. A flow diagram representing the work plan for developing this subsystem is shown in Fig 3.4. This figure represents a basic work plan for the subsystem developed in this report and it also establishes a format for other areas, such as the effect of extreme temperature variations, to be included in the pavement system in subsequent studies by others.

This report covers the steps that lead to development of a satisfactory design process; after that stage, the remaining process involves putting the concept into practice.



Fig 3.4. Basic work plan for a pavement design subsystem.

PART II

٩

e

.

-

REVIEW OF AVAILABLE TECHNIQUES TO BE USED IN THE MODELS

## CHAPTER 4. FATIGUE OF PAVEMENT MATERIALS

The importance of the proper consideration of fatigue<sup>\*</sup> in pavement systems design and the proposed revision of the existing FPS models was discussed in Chapter 3. The object of this chapter is to provide an up-to-date review of fatigue theory as it applies to the design of flexible pavements in the design procedure proposed in this report.

## INTRODUCTION TO FATIGUE

Fatigue type failure in the surface layer of a pavement, indicated by cracking on the surface, is caused by repeated tensile flexural strains from moving loads. As a wheel load passes over a pavement, it is subjected to a rapid build-up and decrease in stress, and the extreme fibers of the surface layer are subjected to repeated flexural strains. To simulate and study the effects of dynamic wheel loads, repeated load tests of surface, base, subbase, and subgrade materials are required. The material samples must be prepared and tested according to a procedure which closely simulates the field conditions.

Generally, the use of nomenclature in available literature for flexural fatigue tests on asphalt concrete and repeated load deformation tests on base, subbase, and subgrade materials has not been consistent and clear. The nomenclature used in this report is given in Appendix 6.

## ASPHALTIC CONCRETE

Only in recent years has the fatigue behavior of bituminous materials been closely scrutinized; thus, the knowledge of asphaltic concrete fatigue behavior is not as well developed as it is for metals. In recent years

<sup>\*</sup> The fatigue has been defined (Ref 42) as "Phenomenon of a fracture under repeated or fluctuating stress having a maximum value less than the tensile strength of the material."

considerable evidence has been accumulated to attest to the fact that flexible pavements exhibit distress due to flexural fatigue caused by the repetitive application of vehicular loads (Ref 100). Descriptions of fatigue studies development are given by Deacon (Ref 24) and Finn (Ref 42).

In 1953, Nijboer and van der Poel (Ref 24) suggested that fatigue may be a significant cause of cracking in asphalt pavements. Hveem (Ref 84) has presented evidence that distress due to fatigue cracking can and does occur in flexible pavements, especially when highly resilient subgrades are encountered. Extensive laboratory studies of asphaltic concrete mixture fatigue behavior have been carried out by Monismith et al at the University of California (Refs 124, 126, 127, 128, 129, and 130). Other investigators who contributed knowledge of fatigue in asphaltic concrete include Heukelom and Klomp (Ref 60), Saal and Pell (Ref 156), Papazian and Baker (Ref 141), Jiminez and Gallaway (Ref 95), Kirk (Ref 105), Vallerga (Ref 180), Garrison (Ref 48), Bazin and Saunier (Ref 5), and Finn and Hicks (Ref 181).

Finally, the WASHO and AASHO Road Tests proved that fatigue distress and failure are due to fatigue cracking in flexible pavements. Distress due to fatigue in pavements is influenced by heavy loads, a large number of repetitions, and the type of foundation materials.

### Classes of Fatigue Cracking

Fatigue cracking in flexible pavements is generally characterized by map patterns (Ref 24). Four types of cracking were defined at the WASHO Road Test (Ref 74). In the AASHO Road Test (Ref 70), cracking was divided into three categories. Class 1 cracking was the earliest type observed and consisted of fine disconnected hairline cracks. As distress increased, Class 1 cracks lengthened and widened until cells were formed, causing alligator cracking, known as Class 2. When the segments of Class 2 cracks spalled more severely at the edges and loosened until the cells rocked under traffic, the situation was called Class 3 cracking.

## Fatigue Failure Hypothesis

Pavement experiencing fatigue starts developing cracks which leads to other forms of distress. The combined effect of these distress manifestations is the measure of pavement performance. The process of fatigue deterioration may be described as

- (1) existing flaws in the pavement, random distribution;
- (2) nonvisible cracking: load repetition increases the number of flaws and widens existing flaws; this widening is not enough to be visible, but enough to cause distress and deformation. This stage is just prior to Class 1 cracks as defined earlier.
- (3) visible cracking: Class 1 to Class 6 cracking as defined at the WASHO Road Test and Class 1 to Class 3 as in the AASHO Road Test. The increase in this form of cracking results in further increase of deformation in the form of roughness and rutting. Water percolation through these cracks may initiate the distress manifestations.

Cracking itself may be of a little significance in the PSI equation, but from the above discussion it seems that cracking is a good overall indicator of pavement performance and other forms of distress in the pavement. A hypothesis that cracking is preliminary to other forms of distress in a pavement, and the correlation of other distresses with the cracking index seems reasonable. Further development of design principles based on this type of hypothesis is dealt with in Chapter 10 of this report.

It is further hypothesized that as the fatigue cracking in asphaltic concrete starts from the existing flaws and the initial distribution of flaws in a structure is stochastic, the whole process of distress development and pavement performance prediction should be based on stochastic principles.

#### Laboratory Fatigue Tests

In fatigue testing the variation in the number of cycles to failure is usually quite large. The ratio of cycles to failure for identical specimens subjected to a given stress level has been reported to be as high as 100 to 1 (Ref 42). This fatigue is recognized as a stochastic process, and a sufficient number of specimens must be tested to predict a probability distribution (Ref 42).

Fatigue behavior in the asphaltic concrete is generally determined in repeated flexural tests in the laboratory in two ways:

- (1) controlled constant load, or stress; and
- (2) controlled constant deflection, or strain.

The controlled stress mode of loading results when the magnitude of the repetitive load applied to the test specimen is maintained constant. In such a test, the deflection of the specimen under each successive load application will gradually increase as damage occurs. In the controlled strain test, the deflection or strain within the test piece is maintained constant by controlled reduction of each load applied to the specimen as damage is accumulated. Figure 4.1 illustrates each of these test modes (Ref 100).

Hicks (Ref 62) has attempted to evaluate the applicability of the controlled stress and strain tests on the basis of computations of elasticity applied to a three-layer pavement. Computations were based on a uniform surface load of 70 psi over a 5-inch radius. Figures 4.2 and 4.3 summarize the results of computations for tensile strain in the under side of the surface layer. In Ref 42 it was shown that a 1-inch thickness of asphaltic concrete surfacing would, for a given loading, be subjected to constant strain regardless of the total thickness of the pavement and the stiffness modulus of the asphaltic layer. Therefore, a constant-strain fatigue test was suggested for thin surface layers. Computations for stress are shown in Figs 4.4 and 4.5. These indicate that the thicker sections are subjected to a relatively constant stress, which suggests the constant stress mode of testing for thicker pavement surfaces (Ref 42).

In a fatigue life study of asphalt and cement-treated bases Gallaway (Ref 46) has made some plots based on linear elastic layered theory and verifies that thicker sections are subjected to a relatively constant stress condition.

Monismith in a paper presented at the University of Nevada in 1966 has suggested that for surface layers less than 2 inches thick the controlled strain mode of testing is applicable, while for asphaltic concrete layers 6 inches thick or greater, the controlled stress mode of loading is appropriate. Between these two thicknesses some intermediate mode of loading should be applied (Ref 100).

In NCHRP Report 39 (Ref 42), Finn explained that in addition to other reasons the in-situ pavement will generally be subjected to constant load conditions, and the loads during the lifetime will not be reduced to maintain a constant strain in the asphaltic layer. From this he concluded the constant stress test to be a more logical mode of laboratory testing for pavement designs.

Based on the following considerations, Kaisianchuk (Ref 100) suggested the controlled stress mode of loading to determine the fatigue response of the asphalt concrete:



(c) Controlled - strain loading.

Fig 4.1. Schematic representation of fatigue behavior of asphalt paving materials for various modes of loading (after Monismith and Deacon).



Fig 4.2. Induced tensile strain as a function of surface modulus, thin section (after Hicks).



Fig 4.3. Induced tensile strain as a function of surface modulus, thick section (after Hicks).



Fig 4.4. Induced tensile stress as a function of surface modulus, thin section (after Hicks).



Fig 4.5. Induced tensile stress as a function of surface modulus, thick section (after Hicks).

- (1) The majority of pavements in which fatigue in asphaltic concrete need be considered will be those in which high traffic volumes and weights will require relatively thick asphaltic concrete layers. In these cases, the controlled stress mode of loading is applicable.
- (2) In the relatively small number of cases in which the controlled strain mode of test is applicable, the controlled stress mode will lead to shorter predicted lives and is, consequently, conservative.
- (3) The controlled stress mode of loading fatigue test results in complete fracture of the test specimen so that no difficulties arise regarding the definition of service life. The test can also be more easily performed in that no regulation of loads is required.

In view of these discussions, fatigue test results based on the controlled stress mode of loading will be adopted in this report, as given in the following paragraph.

#### Fatigue Test Results

Laboratory fatigue test results are typically plotted as fatigue life against some measure of the load magnitude repeatedly applied to the test specimen. For the case of the fatigue testing of asphaltic concretes there is evidence (Ref 42) that this relationship may be adequately represented by a straight line on a plot of the logarithm of the fatigue life against the logarithm of the tensile strain level. For the controlled stress mode of testing, in which the strain level varies throughout the test, this linear relationship holds when the initial level of strain is employed. The logarithmic linear relationship can be expressed, as has been done by Pell (Ref 146) and Deacon (Ref 24), by an equation of the form:

$$N_{j} = A \left(\frac{1}{\epsilon}\right)^{B}$$
(4.1)

where

 $N_j$  = cycles to failure at a particular stress level,  $\epsilon_j$  = bending strain, A and B = constants depending on mixture characteristics. NCHRP Report 39 (Ref 42) contains a discussion of asphaltic concrete fatigue behavior under repeated loading. The following is a summary of the significant results of pertinent field and laboratory studies given in the report:

- (1) Fatigue behavior of asphaltic concrete is similar to that of metal, wood, portland cement concrete, etc., and it appears in laboratory tests as well as in the field.
- (2) A linear relationship exists between the log of stress or strain level and the log of repetitive loads to failure.
- (3) Generally constant stress-type tests will respond with an increasing fatigue life to any mix property which increases the stiffness of the asphaltic concrete. For constant strain tests, the effect of stiffness modulus is reversed. However, at a very low temperature (approximately 32° F), the fatigue life is unaffected by the mode of testing. Table 4.1 exhibits some basic parameters to be considered in the discussion of the laboratory fatigue life test results applicable to the design of pavements. The table exhibits the effect of these parameters on the stiffness and fatigue behavior of asphalt concrete mixtures.
- (4) Longer durations of load application are associated with reduced fatigue life.
- (5) The change in stiffness modulus, deflection, or modulus of rupture during repetitive loading tests may be used to measure fatigue damage. A higher rate of damage appears to occur with the first 10 percent of the repetitive loadings, with a relatively constant and somewhat reduced rate for the next 80 percent of the loadings, followed by an abrupt change to failure.
- (6) Tensile strain is the prime determinant of fatigue life. The test results when converted from stress to strain are essentially independent of the rate of loading (at least for less than 30 applications per minute) and temperature and closely follow the straight line realtionship given in Eq 4.1. Any difference in the test results was explained as due to the difference in the rate of crack proportion.
- (7) Stress reversal appears to have little effect on the rate of the asphalt concrete cumulative damage.
- (8) As long as the temperature and rate of loading do not vary markedly, a mixture of asphaltic concrete will act elastically up to approximately 0.1 percent strain. Thus, it is possible to analyze asphaltic mixtures according to the theory of elasticity for a given situation as represented by a modulus of elasticity or stiffness modulus value.
- (9) Test procedures described in the report can be combined with the multilayered theory for computing stress and strain in the asphaltic surfacing and used, at least qualitatively, to predict expected performance.

## TABLE 4.1. FACTORS AFFECTING THE STIFFNESS AND FATIGUE BEHAVIOR OF ASPHALT CONCRETE MIXTURES (After Kasianchuk)

.

•

|                        |                                      | Result of Change         |                                                      |                                                      |  |  |  |  |  |  |
|------------------------|--------------------------------------|--------------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| Factor                 | Change                               | Stiffness                | Fatigue Life in<br>Controlled Stress<br>Mode of Test | Fatigue Life in<br>Controlled Strain<br>Mode of Test |  |  |  |  |  |  |
| Asphalt<br>penetration | Decrease                             | Increases                | Increases                                            | Decreases                                            |  |  |  |  |  |  |
| Asphalt<br>content     | Increase                             | Increases <sup>(1)</sup> | Increases <sup>(1)</sup>                             | Decreases <sup>(2)</sup>                             |  |  |  |  |  |  |
| Aggregate<br>type      | Increase roughness<br>and angularity | Increases                | Increases                                            | Decreases                                            |  |  |  |  |  |  |
| Aggregate<br>gradation | Open to dense<br>gradation           | Increases                | Increases                                            | Decreases <sup>(2)</sup>                             |  |  |  |  |  |  |
| Air void<br>content    | Decrease                             | Increases                | Increases                                            | Increases <sup>(2)</sup>                             |  |  |  |  |  |  |
| Temperature            | Decrease                             | Increases <sup>(3)</sup> | Increases                                            | Decreases                                            |  |  |  |  |  |  |

(1) Reaches optimum at level above that required by stability considerations.

(2) Not based on significant amount of data but seems reasonable on basis of other information.

(3) Approaches upper limit at temperature below freezing.

.

.

The use of constant stress test results in pavement design reduces the efforts required for laboratory fatigue investigations and provides the basis for development of a rational pavement design procedure based on fatigue, by use of Eq 4.1 and fatigue damage hypothesis.

Further simplification of laboratory investigations would make the design method even more practical. As observed by Kaisianchuk (Ref 100), attempts are being made to provide more simplifications.

#### Damage Hypothesis

Deacon (Ref 24) performed an analysis of the applicability of various compound loading hypotheses to the prediction of asphaltic concrete fatigue life from simple loading test results. The best available hypothesis seems to be the simple linear summation Miner's hypothesis (Chapter 8), and it will be used in this report.

## Application of Fatigue Equation and Miner's Hypothesis

The application of the fatigue equation (4.1) and Miner's hypothesis is explained by the flow diagram shown in Fig 4.6.

The strain induced by the applied load is calculated by layered analysis. Substitution of the strain value in Eq 4.1 gives the value of  $N_j$ , the number of load applications of level j which will cause failure in simple loading. This value of  $N_j$  when substituted in Miner's hypothesis along with the known value of actual number of load applications of level j,  $n_j$  will give the "used life" of the pavement. The use of this life prediction in the actual design procedure as developed in this report is explained in Chapter 8, under development of the cracking index model.

### UNTREATED GRANULAR AND FINE GRAINED MATERIALS

Untreated granular and fine grained materials have different fatigue problems than asphaltic concrete. Repeated applications of loads may result in sufficient cumulative permanent deformations in pavement layers consisting of these materials to cause failures, although a single application of the load would not. These materials in a pavement are normally subjected to a triaxial state of stress. Therefore, the fatigue behavior of these materials under an imposed traffic loading sequence must be analyzed for induced deformations under triaxial states of stress. Although it is unlikely that a method



Fig 4.6. Life prediction from fatigue and Miner's hypothesis.

of pavement design will ever be developed to account for the true behavior of the complex polyphase materials used in flexible pavement, the following steps may prove to be a reliable practical approach for taking into account the proper fatigue behavior of these materials:

- establishment of deformation characteristics under repeated triaxial loading;
- (2) analysis of stress, strain, and deformation; and
- (3) analysis of distress and performance.

Though study of the relationship of stress repetition and deformation in roadway materials is not new, information on the deformation characteristics of materials under repeated loading with different combinations of axial and confining pressures which can actually be used directly in the development of a rational design method is very limited. The available information which can be used in these developments is discussed in Chapter 5.

#### Resilient Modulus

To characterize materials for the elastic layered analysis, the modulus of elasticity can be represented by the resilient modulus. NCHRP Report 35 (Ref 164) gives laboratory data for the repeated load test on granular and fine grained materials. By measuring the resilient (or elastic) strain in a repeated-load triaxial compression test, a resilient modulus can be determined at any number of load repetitions from

$$M_{r}(t) = \frac{\sigma d}{e_{r}(t)}$$
(4.2)

where

- $\sigma d$  = repeated deviator stress, psi;
- e (t) = resilient axial strain corresponding to a particular number of stress repetitions, inches per inch.

Plate load tests at the subgrade surface indicate that the resilient modulus of clay soils varies with applied pressure and water content. The resilient modulus decreases rapidly in the stress range of 1 to 10 psi (a range to be expected in the subgrades of well-designed pavements) and tends to have a constant value at higher stress levels. At equal ratios of applied stress to failure stress, values of resilient moduli of the subgrade soil determined from laboratory repeated load and plate load tests are essentially the same. The factors influencing the resilience of clays under repeated loads can be summarized as follows (Ref 164):

- (1) Resilient deformations generally decrease with an increase in the number of load repetitions.
- (2) Samples compacted to a high degree of saturation increase in strength with time.
- (3) The resilient modulus generally increases with a decrease in the intensity of stress.
- (4) A method of compaction which produces a dispersed structure tends to produce a lower resilient modulus.
- (5) An increase in the degree of saturation at compaction decreases the resilient modulus (AASHO subgrade soil).
- (6) In general, as the water content of the soil increases due to water absorption after placement, the resilience increases.

So long as there is no shear failure, repeated load triaxial compression tests on dry granular materials indicate the following relationship:

$$M_{R} = k\sigma_{3}^{n}$$
(4.3)

where

 $M_R = resilient modulus,$   $\sigma_3 = confining pressure,$ k, n = constants.

The factors influencing the resilience of granular materials can be summarized as follows (Ref 164):

 Higher frequency of load repetitions increases the value of the modulus.

- (2) The type of aggregate and percentage of material passing the No. 200 sieve have a definite effect on the resilient modulus.
- (3) The difference between the moduli of loose and dense sand can be as much as 50 percent.
- (4) An increase in saturation leads to a decrease in the resilient modulus.
- (5) The resilient modulus is independent of the stress level so long as the stress is below a level that causes excessive plastic deformation.

The determination of an appropriate resilient modulus value for subgrades is not a simple problem since the selected subgrade modulus should take the previously noted factors into account. However, using an appropriate laboratory method it is now possible to simulate closely any desired field condition of a soil. For example, kneading compaction produces laboratory specimens with resilience characteristics similar to those observed in field specimens (Ref 164) for the same conditions of test. Thixotropy influence becomes insignificant after about 50,000 repetitions, which is only a fraction of the number of stress repetitions applied to a pavement (Ref 164). The influence of time which is much shorter in the laboratory, needs consideration though the deformation obtained in the laboratory will give conservative estimates of the performance in the field.

For granular materials, also, the laboratory evaluation of resilient modulus imposes several problems. In laboratory testing, estimates must be made for the void ratio, the expected degree of saturation, a reasonable rate of loading consistent with moving traffic, frequency of load applications, a representative number of repetitions consistent with the field conditions, and a representative stress condition based on best judgment and experience.

#### Applications of Repeated Load Test Results

The modulus of resilience of granular and fine grained materials is utilized in the layered elastic analyses to determine the stress and strain in the pavement layers. Then based on stress and strain values and cumulative deformation characteristics of these layers under repeated triaxial loading, the permanent deformation of layers in the form of rut depth is calculated. The computed values of rut depth are finally utilized for pavement performance computations. Development of a rut depth model, in which the above information and procedure are used, is further discussed in Chapter 10. SUMMARY

In this chapter the proper fatigue theory and results of repeated triaxial loading tests as applicable to the flexible pavement design were discussed. To design the pavement on these principles, proper characterization of materials is needed to determine the characteristics which are used in the proposed design procedure. The material characterization is discussed next in Chapter 5.

## CHAPTER 5. CHARACTERIZATION OF FLEXIBLE PAVEMENT MATERIALS

#### INTRODUCTION

A system transforms its input into output according to certain definite relationships which can be simulated by mathematical models using certain material properties. The basic properties of materials are complex physical functions. However, output responses for engineering analysis can be obtained by characterizing the materials for certain significant engineering properties such as stiffness, strength, etc. The literature shows that a great deal of effort has been devoted to measuring such material properties. However, uniformity in the test procedures and analysis of test results seems to be lacking. Many variables involved in material characterization which affect the material response in a system are given in Appendix 2, Table A2.13. Table A2.14 in Appendix 2 shows the details of the test configurations and Table A2.15 gives the various shapes of test specimens. Various variables shown in these tables affect the material response and point out the importance of having a uniformity in test procedures involved in determination of the basic material properties.

Hudson et al (Ref 78) through the systems approach to pavement design have demonstrated the need for characterizing material properties by means of constitutive equations which in turn can be used in mathematical models of pavement systems. The present analysis is based on linear elastic layered theory using fatigue properties of the materials and their stochastic variation in space and time. Therefore, the following material properties and their variations are required:

- (1) elastic constants resilient or elastic modulus E and Poisson's ratio  $\mu$ ;
- (2) stochastic variations of elastic constants; and
- (3) stress-strain relationships of materials as affected by time, temperature, and fatigue characteristics.

Table 5.1 is a summary of the tests required for material characterization for the design procedure discussed in this report. In the present analysis

## TABLE 5.1. SUMMARY OF SAMPLING AND TESTING REQUIREMENTS (Ref 116)

2

.

a - 1

.

|                              | Elastic (                                                                                                         | Constants                                                                                                                                                                                                                                                                                                                                                                                     | Strength and Deformation Tests                                                                                    |                                                                                             |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| Material Type                | Sampling                                                                                                          | Testing                                                                                                                                                                                                                                                                                                                                                                                       | Sampling                                                                                                          | Testing                                                                                     |  |  |  |  |  |
| Asphaltic concrete           | Intact or frag-<br>mented                                                                                         | Heukelom and Klomp<br>1. Asphalt pene-<br>tration at 77° F<br>2. Ring and Ball<br>softening point<br>° F<br>3. Aggregate volume<br>concentration<br>4. Air voids<br>5. Time of loading<br>6. Temperature at<br>which stiffness is<br>required<br><u>Nijboer Method</u><br>1. Marshall stability<br>2. Flow value<br>3. Time of loading<br>4. Temperature at<br>which stiffness is<br>required | Previously estab-<br>blished or repro-<br>duced laboratory<br>specimens                                           | Fatigue                                                                                     |  |  |  |  |  |
| Granular Base and<br>subbase | <ol> <li>Density and<br/>moisture</li> <li>Remolded<br/>specimens</li> </ol>                                      | Resilient modulus M <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>Density and<br/>moisture</li> <li>Remolded<br/>specimens</li> </ol>                                      | Rupture envelope<br>from triaxial shear.<br>Repeated load tri-<br>axial tests varying       |  |  |  |  |  |
| Fine grained<br>subgrade     | <ol> <li>Undisturbed<br/>push barrel</li> <li>Density and<br/>moisture</li> <li>Remolded<br/>specimens</li> </ol> | Resilient modulus M<br>R                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>Undisturbed<br/>push barrel</li> <li>Density and<br/>moisture</li> <li>Remolded<br/>specimens</li> </ol> | axial and confining<br>pressures for per-<br>manent and resil-<br>ient strains.<br>Fatigue. |  |  |  |  |  |

ſ

distress and performance models developed in this report will be verified by the AASHO Road Test performance data. It is necessary, therefore, to characterize the materials used at the AASHO Road Test. Though the details which follow deal specifically with the characterization of the AASHO Road Test materials, the procedure, in general, is applicable for characterizing the materials which will be used with this design procedure.

#### ASPHALTIC CONCRETE

#### Stiffness

The response of asphaltic concrete to stress and strain is influenced by time and temperature to a pronounced degree. Asphaltic concrete under stress exhibits instant and time dependent strain, both of which may be partly recoverable and partly permanent. The time dependent part may be viscous or nonviscous. Instantaneous strain under moving traffic forms a large proportion of the total strain. Stress history is also important. The material's true response is nonlinear. Table 4.1 outlines the general effects of some variables on the stiffness of asphaltic concrete. However, the elastic properties of asphaltic concrete mixtures have been shown to be represented by its stiffness at a particular time of loading and temperature. A quasi-elastic modulus termed stiffness can be obtained by (1) the Heukelom and Klomp method (Ref 42) as modified by Van Draat and Somnner (Ref 38) for greater air voids and (2) the Nijboer method (Ref 173). The parameters required to define the stiffness by these methods are given in Table 5.1.

Appendix 2 details the calculation of the stiffness values of the asphalt concrete used at the AASHO Road Test. Table 5.2 gives the stiffness values adopted for the present analysis.

## Poisson's Ratio

The Poisson's ratio or asphaltic concrete is not a very sensitive parameter in the layered analysis. Any standard test can be adopted to compute the value of this variable. According to NCHRP Report 39 (Ref 42) Poisson's ratio in general varies from 0.3 to 0.5 for a small deformation. A value of 0.3 is appropriate at cold temperatures (less than  $40^{\circ}$  F) and at a loading time of 0.1 second. At higher temperatures and slower rates of loading the value may increase to 0.5. A value of 0.3 is reported by Deacon (Ref 26). For the present analysis, a value of 0.3 is adopted.

| Month             | Temperature, <sup>O</sup> F | Stiffness Modulus, psi x 10 <sup>5</sup> |
|-------------------|-----------------------------|------------------------------------------|
| January           | 21 <sup>°</sup>             | 16.0                                     |
| Febru <b>a</b> ry | 25 <sup>0</sup>             | 14.2                                     |
| March             | 27 <sup>0</sup>             | 13.7                                     |
| April             | 41 <sup>°</sup>             | 9.0                                      |
| May               | 54 <sup>0</sup>             | 6.0                                      |
| June              | 66 <sup>0</sup>             | 4.0                                      |
| July              | 70 <sup>0</sup>             | 3.5                                      |
| August            | 75 <sup>0</sup>             | 3.0                                      |
| September         | 65 <sup>0</sup>             | 4.2                                      |
| October           | 51 <sup>0</sup>             | 6.5                                      |
| November          | 43 <sup>0</sup>             | 8.3                                      |
| December          | 28 <sup>0</sup>             | 13.1                                     |

## TABLE 5.2. STIFFNESS VALUES FOR ASPHALTIC CONCRETE (AASHO ROAD TEST MATERIAL)

\_

.

## Stochastic Variation in Elastic Properties

The stochastic variation in stiffness values of asphaltic concrete in space have been considered in terms of the coefficient of variation, as detailed in Appendix 2. The values of standard deviations have been obtained from the available field and laboratory test results. An average value for the coefficient of variation is computed to be about 25 percent of the mean value. Variation of the stiffness value in time has been determined by monthly variation in temperature. Due to the relative insensitivity of Poisson's ratio in the layered analysis the stochastic variation in this parameter has not been taken into account.

#### Fatigue Test Data

Repetitive applications of tensile stresses smaller than the tensile strength ultimately cause fatigue cracking in asphaltic concrete. For controlled-stress loading, the mean fatigue life N is related to the initial tensile strain  $\epsilon$  by Eq 4.1. The values of A and B depend upon the type of mixture, the condition of testing, and the failure definition. The values for B reported for the controlled stress mode of loading (Ref 26) vary from 2.5 to 5.9. The values of A for asphaltic concrete have been shown to vary from 10<sup>-6</sup> to 10<sup>-10</sup> (Ref 38). For asphaltic concrete used at the AASHO Road Test, no direct fatigue test results are available. A value of B = 3.1 and A =  $6.5 \times 10^{-7}$  was adopted for this analysis. These values correspond to the test results obtained at the University of California (Refs 24, 38, and 100) for similar asphaltic concrete mixtures.

Fatigue test data exhibit extreme variability. However, the fatigue life of specimens tested in simple, controlled stress loading with identical testing conditions can be approximated by a logarithmic normal distribution (Ref 24). The log of the standard deviation of fracture life varies from about 0.2 to 0.4 (Ref 24). However, Kaisianchuk (Ref 100) in his study of asphalt concrete has shown that the logarithm of the standard deviation of fracture life depends on the stress level, but could be assumed to be about 0.25 for a wide range of asphalt mixes. In view of the above and the fact that no fatigue test data for asphaltic concrete at the AASHO Road Test are available, the value of 0.25 was adopted for the purpose of analysis.

## BASE AND SUBBASE GRANULAR MATERIALS

## Resilient Modulus

A review of the limited data on the modulus of deformation for the materials used at the AASHO Road Test reveals a wide range of values. No direct test results applicable to the present analysis are available for the modulus values of AASHO Road Test materials. Various approaches through which modulus  $M_R$  values for AASHO materials for each month were selected are given in Appendix 2. Table 5.3 gives the  $M_P$  values adopted for this analysis.

## Poisson's Ratio

Poisson's ratio is relatively insensitive in the elastic layered analyses, and typical values of 0.4 for the base and 0.45 for the subbase were adopted.

#### Stochastic Variation

Information on stochastic variations of elastic properties is not available for base and subbase granular materials used at the AASHO Road Test. Therefore, the standard deviation of modulus value was based on observed variations in the test results of other significant properties having direct relationship to the modulus value. An approximate value of coefficient of variation of about 25 percent was computed. The details of these computations are shown in Appendix 2. No stochastic variation in Poisson's ratio was considered.

## Deformation Properties Under Repeated Loading

The behavior of granular materials under repeated loading is highly dependent on the degree of confinement. Haynes and Yoder (Ref 57) presented the results of undrained repeated-load triaxial compression tests on gravel and crushed stone used as base course at the AASHO Road Test. In these tests, a lateral pressure of 15 psi and a deviator stress of 55 psi were used. For the present analysis, curves representing the actual developed stresses in the pavement sections were required. A literature review revealed that the results of a study performed at Texas A&M University (Ref 35) on nine types of granular materials could be used to obtain this information. To ascertain the possibility of using this information to characterize the properties of the granular materials used at the AASHO Road Test, a comparison of various properties of the two materials was made. This comparison (Table 5.4) shows that the angular medium aggregate used for the A&M University test is similar to the AASHO base material and the rounded fine aggregate is similar to the AASHO subbase material.

|           | M <sub>R</sub> , | psi     |
|-----------|------------------|---------|
| Month     | Base             | Subbase |
| January   | 24,000           | 13,200  |
| February  | 24,000           | 13,200  |
| March     | 24,000           | 13,200  |
| April     | 15,600           | 7,200   |
| May       | 18,000           | 8,600   |
| June      | 19,600           | 9,800   |
| July      | 21,600           | 10,800  |
| August    | 23,200           | 11,600  |
| September | 24,000           | 12,200  |
| October   | 24,000           | 12,400  |
| November  | 24,000           | 12,800  |
| December  | 24,000           | 13,200  |

# TABLE 5.3. MONTHLY VALUES OF MODULUS OF RESILIENCE OF BASE AND SUBBASE OF AASHO MATERIAL

|                                                                                                                                | Base Mat                         | erial                                     | Subbase                        | Material                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|
| Properties                                                                                                                     | AASHO                            | A&M                                       | AASHO                          | A&M                                                                                      |
| Gradation                                                                                                                      | See                              | Figures 5.1                               | and 5.2                        |                                                                                          |
| Optimum moisture content, %                                                                                                    | 7.6                              | 7.0                                       | 7.7                            | 7.3                                                                                      |
| Maximum unit weight                                                                                                            | 137.9                            | 136.0                                     | 133.1                          | 134.0                                                                                    |
| Texas triaxial class                                                                                                           | 1                                | 1                                         | 3.7                            | 3.0                                                                                      |
| <pre>Plasticity    a) liquid limit    b) plasticity index    c) linear shrinkage Los Angeles abrasion  (500 revolutions)</pre> | -<br>N.P 4.3<br>-<br>23.9 - 28.3 | 17.8<br>2.3<br>2.4<br>25.3                | -<br>N.P 3.4<br>-<br>25 - 35.4 | 21.3<br>7.4<br>5.6<br>27.3                                                               |
| Specific gravity                                                                                                               | 2.78                             | 2.63                                      | 2.69                           | 2.64                                                                                     |
| Permeability (ft/day)                                                                                                          | .006 <b>-</b> 140                | 0.003                                     | $.0003 - 20 \times 10^7$       | 0.006                                                                                    |
| Brief description                                                                                                              | Crushed<br>limestone             | Angular<br>medium<br>crushed<br>limestone | Natural<br>sand and<br>gravel  | Rounded<br>fine lime-<br>stone mixed<br>with sand<br>and other<br>calcium ·<br>carbonate |

# TABLE 5.4. COMPARISON OF ASSHO BASE AND SUBBASE MATERIAL WITH A&M TYPICAL AGGREGATE

.

•

Table 5.5 compares the repeated load test results given by Haynes and Yoder (Ref 57) for the AASHO Road Test base material (curve s-1-c of Fig A2.1) with those given in the A&M University study for angular medium aggregate. The comparison is made for the total strain at an axial pressure of 70 psi and a confining pressure of 15 psi. The values of total strain in the two cases are approximately the same at 10,000 repetitions. A relatively large difference exists at 100,000 repetitions, which is not likely to influence the average results since the samples were near the failure point at these levels of strains and number of applications. There are many reasons for the difference between the total strain values. A part of the difference can be assigned to the difference in frequency and time of loading during the test in the two cases, as shown in Figs A2.2 and A2.3. Higher strain values would not have been obtained for the AASHO Road Test material if the time and frequency of loading were the same as those for the A&M test materials. For the reasons outlined above and since better data were not available, it is considered appropriate to characterize the fatigue characteristics of the AASHO Road Test base and subbase materials respectively by the angular medium and rounded fine aggregates used at the A&M University test.

## Models to Characterize the "Repeated Load-Deformation" Characteristics

The values of permanent strain and corresponding load repetitions are tabulated in Tables 5.6 and 5.7 for various combinations of vertical and confining pressures. The range of values for stresses is selected to be comparable with the expected values in the pavement structures under normal traffic loads.

So that the data given in Tables 5.6 and 5.7 could be conveniently used for the present analyses a regression analysis was performed to predict the total strain value as a function of the number of load repetitions, vertical stress, and confining stress. The regression equations are given below.

Base Material:

Correlation coefficient  $R^2 = 0.9938$ Standard error of residuals  $\sigma = 0.0745$  $\varepsilon = 0.57852 - 0.20640 \sigma_3 + 0.07854 \sigma_1 - 0.01464 \sigma_3 \log N$ 

- 0.00121  $\sigma_1 \log N - 0.00408 \sigma_1 \sigma_3 + 0.03846 (\log N)^2$ 

| Number of    | Total strain for AASHO | Total strain for angular<br>medium aggregate at A&M |
|--------------|------------------------|-----------------------------------------------------|
| Applications | Road Test material, %  | University test, %                                  |
| 100          | 0.21                   | 0.15                                                |
| 1,000        | 0.41                   | 0.6                                                 |
| 10,000       | 1.08                   | 1.0                                                 |
| 100,000      | 4.4                    | 1.3                                                 |

## TABLE 5.5. COMPARISON OF TOTAL STRAIN FOR AASHO ROAD TEST AND TEXAS A&M UNIVERSITY TEST MATERIALS

.

|    | Kon    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 6  | 9.05.V | 2.0  |      |      |      |      | 3.0  |      |      |      | 4.0  |      |      |      |      | 50   |      |      |      |      |      |
| 1. | 36. \  | 10.0 | 20.0 | 30,0 | 40.0 | 50,0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 |
|    | 1.0    | 1.2  | 1.7  | 2.1  | 2.5  | 3.1  | 1.3  | 1.8  | 2.2  | 2.6  | 3.2  | 1.4  | 2.0  | 2.3  | 2.7  | 3.3  | 1.5  | 2.2  | 2.4  | 2.8  | 3.5  |
|    | 3.0    | 0.5  | 1.0  | 1.6  | 2.0  | 2.5  | 0.6  | 1.1  | 1.7  | 2.1  | 2.6  | 0.7  | 1.2  | 1.8  | 2.2  | 2.7  | 0.8  | 1.33 | 1.9  | 2.3  | 2.8  |
|    | 5.0    | 0.2  | 0.5  | 0.9  | 1.4  | 1.8  | 0.3  | 0.6  | 1.0  | 1.5  | 1.9  | 0.4  | 0.7  | 1.1  | 1.6  | 2.0  | 0.5  | 0.8  | 1.2  | 1.7  | 2.1  |
|    | 7.0    | 0.05 | 0.2  | 0.5  | 0.8  | 1.2  | 0.1  | 0.3  | 0.6  | 0.9  | 1.3  | 0.15 | 0.4  | 0.7  | 1.0  | 1.5  | 0.2  | 0.5  | 0.8  | 1.1  | 1.7  |
|    | 9.0    | 0.01 | 0.05 | 0.2  | 0.5  | 0.9  | 0.04 | 0.1  | 0.3  | 0.6  | 1.0  | 0.07 | 0.15 | 0.4  | 0.7  | 1.1  | 0.1  | 0.2  | 0.5  | 0.8  | 1.2  |

| TABLE 5.6. | LOAD REPETITIONS | AND DEFORMATION | DATA FOR BASE | MATERIAL IN % | STRAIN E | (FIG A2.8) |
|------------|------------------|-----------------|---------------|---------------|----------|------------|
|------------|------------------|-----------------|---------------|---------------|----------|------------|

. ,

• •

.

\*

| /   | 000 H |      |      | 2.0  |      |      | 3.0  |      |      |      | 4.0  |     |      |      |      | 5.0  |     |      |      |      |      |
|-----|-------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|-----|------|------|------|------|
| (So | s: \  | 5.0  | 10.0 | 15.0 | 20.0 | 25.0 | 5.0  | 10.0 | 15.0 | 20.0 | 25.0 | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 |
|     | 1.0   | 0.3  | 0.8  | 1.0  | 1.5  | 2.0  | 0,5  | 1.0  | 1.5  | 2.0  | 3.0  | 0.7 | 1.2  | 2.0  | 2,5  | 4.0  | 0.9 | 1.4  | 2.5  | 3.0  | 5.0  |
|     | 2.0   | 0.2  | 0.7  | 1.0  | 1.2  | 1.5  | 0.3  | 0.8  | 1.1  | 1.6  | 2.0  | 0.4 | 0.9  | 1.3  | 1.8  | 3.0  | 0.5 | 1.0  | 1.5  | 2.0  | 4.0  |
|     | 3.0   | 0.1  | 0.2  | 0,8  | 1.0  | 1.4  | 0.2  | 0.4  | 0.8  | 1.2  | 1.6  | 0.3 | 0,6  | 1.0  | 1.4  | 1.8  | 0.4 | 0.8  | 1.2  | 1.6  | 2.0  |
|     | 4.0   | 0.01 | 0.5  | 0.75 | 0.9  | 1.25 | 0.1  | 0,6  | 0.8  | 1.0  | 1.4  | 0.2 | 0.65 | 0.85 | 1.1  | 1.5  | 0.3 | 0.7  | 0.9  | 1.2  | 1.6  |
|     | 5.0   | 0.08 | 0.2  | 0.3  | 0.5  | 0.9  | 0.09 | 0.3  | 0.4  | 0.6  | 1.0  | 0.2 | 0.4  | 0.5  | 0.7  | 1.2  | 0.3 | 0.5  | 0.6  | 0.8  | 1.3  |

| TABLE 5.7. | LOAD REPETITIONS | AND | DEFORMATION | DATA   | FOR | SUBBASE M | MATERIAL | IN | % STRAIN      | E | (FIG A2.9) |
|------------|------------------|-----|-------------|--------|-----|-----------|----------|----|---------------|---|------------|
|            |                  |     |             | 211211 | •   |           |          |    | /0 0 1.1.1.1. | - | (1 10      |

ii ť≈

· .

....

.

.



Fig 5.1. Grading curve for subbase.



Fig 5.2. Grading curve for base.

- Notes: (1) Dotted and firm lines show the result of AASHO Road Test materials (Ref 66).
  - (2) Chain line shows the result of A&M materials (Ref 35, Figs 3.5 and 3.6).

$$- 0.00093 \sigma_{1}^{2} - 0.00062 \log N \sigma_{3}^{2} - 0.00292 (\log N)^{3} + 0.00204 \sigma_{3}^{3} + 0.0001 \sigma_{1}^{3} - 0.004 \sigma_{3}^{2} \sigma_{1} + 0.00006 \sigma_{1}^{2} \sigma_{3} + 0.00046 \sigma_{1}^{2} \sigma_{3} \log N$$

$$(5.1)$$

Subbase Material:

Correlation coefficient 
$$R^2 = 0.9772$$
  
Standard error of residuals  $\sigma = 0.1442$   
 $\varepsilon = -0.75465 + 0.25605 \log N + 0.17009 \sigma_1 - 0.14433 \log N \sigma_3$   
 $+ 0.01187 \log N \sigma_1 + 0.01139 \sigma_1 \sigma_3 + 0.04947 \sigma_3^2 - 0.01132 \sigma_1^2$   
 $+ 0.03340 \log N \sigma_3^2 + 0.00115 \log N \sigma_1^2 - 0.01885 \sigma_3^3$ 

+ 0.00025 
$$\sigma_1^3$$
 + 0.00367  $\sigma_3^2 \sigma_1$  - 0.00072  $\sigma_1^2 \sigma_3$ 

- 0.01018  $\sigma_1 \sigma_3$  log N (5.2)

where

 $\sigma_3$  = radial or confining stress, psi;  $\varepsilon$  = percent permanent strain; N = number of stress applications;  $\sigma_1$  = vertical stress, psi.

Each of the above equations is based on 100 observations. For an actual design problem, the designer will replace these equations with the actual properties obtained for the materials to be used.

#### CHARACTERIZATION OF SUBGRADE "FINE GRAINED COHESIVE SOILS"

## Elastic Constants

A resilient modulus  $M_R$  of the subgrade soil can be determined by measuring the resilient strain in a repeated load triaxial compression test. Since the  $M_R$  value is sensitivie to many factors, as outlined in Chapter 4, the choice of a correct value is difficult. However, as detailed in Appendix 2, various approaches led to the selection of suitable values based on available information. Resilient modulus values at different moisture contents were studied and the monthly values adopted are shown in Table 5.8. Because Poisson's ratio is relatively insensitive in the layered analysis, a mean typical value of 0.5 for subgrade soils was adopted.

#### Stochastic Variation

No direct information was available for the stochastic variation of the  $M_R$  value. However, based on the general variations in other properties having a direct relationship with the  $M_R$  value, as outlined in Appendix 2, a standard deviation of about 25 percent of the mean value was adopted.

#### Deformation Properties Under Repeated Loading

The procedure developed in this dissertation requires stress-strain plots for various axial and confining pressure combinations. The AASHO Road Test subgrade soil was tested in the repeated load test (Ref 165) at a confining pressure of 3.5 psi for various axial stresses (Fig A2.10). The test was made at a moisture content of 15.3 percent. A variation in permanent deformation characteristic is observed due to variation in moisture content, but at the low stress levels encountered in the pavements this variation will be very small. For practical application of the method, repetitive load tests at various moisture contents expected in the field can be obtained for increased accuracy.

For AASHO Road Test subgrade soil, the repetitive load test curves are available only for 3.5 psi confining pressure. For the analysis, similar data are required for various confining pressures in the range expected in the analysis. To make use of the available information, it has been assumed that the total axial deformation is the same for the same deviator stress. Knowing the deviator stress ( $\sigma_1^{"} - \sigma_3^{"}$ ) in the actual pavement, total strain corresponding
| TABLE 5.8. | MONTHLY VA | ALUES OF | MODULUS | OF | RESILIENCE | OF | AASHO | SUBGRADE |
|------------|------------|----------|---------|----|------------|----|-------|----------|
|            | MATERIAL   |          |         |    |            |    |       |          |

| Month     | M <sub>R</sub> , psi |
|-----------|----------------------|
| January   | 6600                 |
| February  | 6600                 |
| March     | 6600                 |
| April     | 3600                 |
| Мау       | 4300                 |
| June      | 4900                 |
| July      | 5400                 |
| August    | 5800                 |
| September | 6100                 |
| October   | 6200                 |
| November  | 6400                 |
| December  | 6400                 |

.

to  $\sigma'_1$  - 3.5 can be obtained from the curves developed for a confining pressure of 3.5 psi. Equivalent vertical stress  $\sigma'_1$  will be computed as follows:

$$\sigma_1' - 3.5 = \sigma_1'' - \sigma_3'' \tag{5.3}$$

where

 $\sigma_1'' - \sigma_3'' =$  deviator stress in actual pavement,  $\sigma_1' =$  equivalent vertical stress.

Table 5.9 shows the values of the permanent strains vs stress applications for various axial stresses at a constant confining pressure of 3.5 psi.

## Regression Model to Characterize Deformation-Repeated Load Characteristics

To utilize the available information a regression analysis was performed on the data shown in Table 5.9, and the following regression model was obtained.

For  $\sigma_3 = 3.5$ , psi in compression

The correlation coefficient  $R^2 = 0.99$ , and the standard error of residuals = 0.16 = 0.0016 in/in.

$$\epsilon = 0.35461 \sigma_1 - 0.04064 \sigma_1 \log N - 0.06511 \sigma_1^2 + 0.00283 \sigma_1^3 + 0.00744 \sigma_1^2 \log N$$
(5.4)

where symbols are as previously defined.

In the case of actual design problems, the user may replace this regression equation by the data obtained from the tests on actual subgrade material.

### SUMMARY

In this chapter the characterization of the materials applicable to the proposed models is described with special reference to the AASHO Road Test materials. Summary of sampling and testing requirements are shown in Table 5.1. The elastic moduli of the AASHO Road Test materials are shown in Tables 5.2, 5.3, and 5.8, while the repeated load-deformation characteristics are described by Eqs 5.1, 5.2, and 5.4. For actual problems, the user may characterize the

# TABLE 5.9. REPETITIVE LOAD AND DEFORMATION DATA OF AASHO ROAD TEST SUBGRADE MATERIAL (FIG A2.10)

Confining preesure  $\sigma_3 = 3.5 \text{ psi}$ 

Moisture content = 15.3%

| Axial stress | Number of stress<br>repetitions N | Total strain<br>% ε |
|--------------|-----------------------------------|---------------------|
| 0.0          | 1                                 | 0.0                 |
| 0.0          | 10                                | 0.0                 |
| 0.0          | 100                               | 0.0                 |
| 0.0          | 1,000                             | 0.0                 |
| 0.0          | 10,000                            | 0.0                 |
| 0.0          | 100,000                           | 0.0                 |
| 0.0          | 1,000,000                         | 0.0                 |
| 6.6          | 1                                 | 0.1                 |
| 6.6          | 10                                | 0.2                 |
| 6.6          | 100                               | 0.3                 |
| 6.6          | 1,000                             | 0.4                 |
| 6.6          | 10,000                            | 0.6                 |
| 6.6          | 100,000                           | 0.8                 |
| 6.6          | 1,000,000                         | 1.0                 |
| 9.7          | 1                                 | 0.2                 |
| 9.7          | 10                                | 0.4                 |
| 9.7          | 100                               | 0.6                 |
| 9.7          | 1,000                             | 0.8                 |
| 9.7          | 10,000                            | 1.0                 |
| 9.7          | 100,000                           | 1.2                 |
| 9.7          | 1,000,000                         | 1.5                 |
| 16.0         | 1                                 | 0.6                 |
| 16.0         | 10                                | 1.8                 |
| 16.0         | 100                               | 3.0                 |
| 16.0         | 1,000                             | 4.3                 |
| 16.0         | 10,000                            | 5.7                 |
| 16.0         | 100,000                           | 7.0                 |

materials as described in this chapter and may replace the regression models (Eqs 5.1, 5.2, and 5.4) by the data obtained from the tests on actual materials.

•

•

P

# CHAPTER 6. USE OF ELASTIC THEORY AND LAYERED ANALYSIS IN THE DESIGN OF FLEXIBLE PAVEMENTS

The concept of linear elastic layered theory has been utilized in the design approach developed in this report. Thus, this chapter discusses the use of this theory in the proposed procedure for the design of flexible pavements.

### INTRODUCTION

The use of linear elastic theory and layered analysis in the design of flexible pavements is becoming more feasible because of the relative ease of solution with the present generation of computers. In the past, direct application of the results to pavement design was generally unsuccessful for the following factors (Ref 131):

- (1) complexity of solutions,
- (2) difficulty in isolating the particular cause of distresses affecting the pavement performance, and
- (3) lack of agreement between measured and predicted stress and strains.

The first factor has been partially eliminated as a problem by the development of computers. As far as the second factor, it is generally recognized that tensile strain in an asphaltic material is a major factor in determining the fatigue life, although any single theory based on elastic behavior of materials cannot account for all complexities and factors involved. Many discrepancies in the predicted and observed stresses and strains caused by the third factor are eliminated by a better understanding of material characterization and by more general methods of calculation. Thus, a rational design procedure is established in this report using linear elastic layered theory to calculate the tensile strains in the asphaltic concrete layers. The stresses and strains in the other layers are used to determine rut depth in a pavement system.

63

### BEHAVIOR OF IDEAL MATERIALS

In the previous two chapters, the behavior of real materials was described. In the remaining portion of this chapter, the behavior of ideal materials, required by the theory, is described.

The strain of an ideal elastic body and the strain rate of a viscous fluid are both proportional to stress and independent of time. The strain of an ideal elastic body is recoverable upon unloading, but this is not the case for an ideal viscous body (Ref 183).

A deformation is said to be anelastic (to have delayed elasticity) if it is time-dependent and completely recoverable. An ideal elastic body may be represented by a spring, and an ideal viscous fluid by a dash-pot. Any combination of spring and dash-pot is said to represent viscoelastic behavior. Certain combinations of springs and dash-pots give rise to anelastic behavior (Ref 183).

Plastic deformations may or may not be time-dependent. Aspects of linearity or nonlinearity aside, the main difference between viscous deformation and time-dependent plastic deformation is the irreversibility of the latter. If the direction of the load is reversed, a viscous deformation will be completely reversible, but a plastic deformation will not be reversible (Ref 183).

For low stresses, asphaltic concrete and other pavement materials may behave in a linearly elastic fashion, while at higher loads, the stress-strain curve is nonlinear. Ideally, the pavement material may exhibit one or all of the following major types of deformation behavior (Ref 183).

|                     | Behavior for  | Behavior for   |
|---------------------|---------------|----------------|
|                     | Instantaneous | Time-Dependent |
| Type of Deformation | Deformation   | Deformation    |
|                     |               |                |
| Recoverable         | Elasticity    | Anelasticity   |
| Irrecoverable       | Plasticity    | Viscosity      |

In addition to the above factors, ideal materials are considered homogeneous and isotropic. For homogeneous materials, the elastic properties are identical throughout the material and in isotropic materials, the elastic properties are identical in all directions at any point within the material.

# Elastic Materials

Elastic theories have been used for pavement within granular and fine grained materials, not because they are ideal elastic bodies but due to the availability of solutions. However, properly used, the theories give solutions which are accurate. The first and most widely known theory is that of Boussinesq (Ref 8), which deals with stresses in a homogeneous, isotropic, linearly elastic solid of semi-infinite extent subjected to a load applied normally to the surface. This theory is not fully utilized, since pavements with their layered structure do not satisfy the requirements of homogeneity. More realistic are the two and three-layered solutions developed by Burmister (Ref 14). With the advent of computers, solutions for up to 15 layers have been developed (Ref 116). Many solutions have been published for a layered homogeneous elastic solid loaded by a uniform vertical load over a circular area. These solutions are tabulated by Seed et al (Ref 164) and Morgan and Scala (Ref 131).

In an isotropic medium, only Young's modulus E and Poisson's ratio  $\mu$ are required. In the Boussinesq solution, all stress components are independent of E and only the radial and tangential stresses are affected by the value of  $\mu$ . In layered elastic systems, the stresses are influenced principally by modular ratios and not by absolute values. Displacements are influenced by the magnitude of E in a single layer and by the modulus ratios, as well as magnitudes of E in the multilayer system. Poisson's ratio also influences displacements but in a nonproportional fashion. The influence of  $\mu$  is quite insignificant and has been largely ignored.

The difficulty in the use of the anisotropic solution lies in the difficulty in determining some of the parameters of real materials. This determination may not be needed for the accuracy required from a practical standpoint. The effect of nonhomogeneity at various depths of granular materials, where stiffness changes with confining pressure, has been considered by various authors and was discussed in Chapter 4.

# Viscoelastic Materials

The stiffness of asphaltic concrete varies with temperature and rate of loading. To account for this, the viscoelasticity theory should be applied to solve for stress and strain. However, because of the additional complexity involved in assuming viscoelastic behavior, much asphalt pavement analysis has been carried out using elastic theory. Complications of viscoelasticity in asphaltic concrete can be avoided by accounting for the influence of loading rate and temperature on asphalt stiffness by testing samples at the same rate of loading and temperature as observed in the field. Various methods of computing the stiffness have been developed, as explained in Chapter 5.

Although pavement and subgrade materials ideally exhibit viscoelastic behavior, the extent is considerably less than for asphalt concrete. Therefore, for these materials the complications of viscoelastic behavior can be avoided by the proper choice of testing technique.

### COMPARISON OF PREDICTED AND OBSERVED BEHAVIOR

Ultimate decisions about the applicability of elastic theory to pavements can be based on the comparison of the following measured and predicted characteristics:

- (1) stress in single and multilayered systems,
- (2) vertical strains and deflections, and
- (3) horizontal strains in asphalt layer.

### Stress in Single and Multilayered System

The stress estimation from strain measurement has been reported to be one of the most straightforward ways to evaluate the usefulness of elastic theory (Ref 131). These measurements have been reported for both uniformaly prepared sand masses and fine grained soils (Ref 131). Considering the results of measurement in both single and multilayered systems, the following conclusions were derived (Ref 131).

- (1) Vertical stress distributions for the appropriate boundary conditions are given with reasonable accuracy by both the Boussinesq single layer and the Burmister multilayered theories. For twolayered systems, the modular ratio used for unbound bases is probably only two to three, and the difference between the stresses predicted by the two theories is small. Variations from the assumed conditions of isotropy and homogeneity are unlikely to influence the vertical stress significantly.
- (2) Radial stresses, except close to the surface in single-layered systems, are underestimated by both the single and multilayered theories. It has been suggested that better agreement would be obtained if the consideration of proper anisotropy of the material in the horizontal and vertical directions is taken.

# Vertical Strains and Deflections

Direct application of elastic theory may not give very accurate results. However, approximate approaches based on the elastic theory have been developed and are discussed in Chapter 10.

### Horizontal Tensile Strain in Asphaltic Material

The horizontal tensile strain at the base of an asphaltic layer has been widely accepted as the criterion for fatigue failure of these materials. The comparison between observed and predicted values from layered theory shows reasonable agreement. The strain values at the base of the layer are given most accurately and these are the ones which are used in fatigue design.

### SUMMARY

The discussion in this chapter indicates that for all practical purposes, the use of linear elastic theory in pavement design gives solutions which are accurate enough from a practical standpoint. Complexity of solutions has been partially eliminated by the development of computers, making the use of the theory more feasible. A rational design procedure can be established by the use of stress and strain, which are calculated by this theory. PART III

\*

.

٠

÷

-

DEVELOPMENT OF MODELS

# CHAPTER 7. DEVELOPMENT OF DISTRESS MODELS

The term failure as applied in the design of many engineering structures cannot be used for pavement systems. For example, a pavement could be considered to have failed according to structural design standards, such as appearance of cracks, but may still be capable of performing at a reduced level. A pavement should be designed and evaluated in terms of the level of service or performance it can provide. The categories of distress manifestations affecting the performance of a pavement system were introduced in Chapter 3. In this chapter, the distress index model for computing the pavement performance is developed.

There is a complex interrelationship between pavement component materials, pavement behavior, and performance of the pavement. As defined in NCHRP 1-10 (Ref 78), behavior is the reaction or response of a pavement to load, environment, and other inputs. Performance is a measure of the accumulated service provided by a facility and is a direct function of the history of the present serviceability index of the pavement according to the AASHO concept of PSI, as discussed in Appendix 7 of this report.

Distress mechanisms have been defined (Ref 78) as responses which lead to some form of distress when carried to an extreme limit. Figure 3.1 gives the three categories of pavement distress model which are limiting responses. In general, the distress index (quantification of the limiting responses) is expressed as some function of the measure of the limiting responses in space and time, the limiting responses being the function of distress mechanism, shown in Fig 3.1. When the distress index exceeds some acceptable level, the pavement system is considered to have failed.

### IDEAL DISTRESS INDEX MODEL

A conceptual distress index can be expressed as follows (Ref 78):

$$\underline{DI}(\underline{x},t) = \underbrace{F}_{s=0} [\underline{C}(\underline{x},s), \underline{S}(\underline{x},s), \underline{D}(\underline{x},s)\underline{x},t]$$
(7.1)

69

| t                                | = | time;                                                           |
|----------------------------------|---|-----------------------------------------------------------------|
| <u>x</u>                         | u | position vector of a point referred to a coordinate system;     |
| <u>DI(x</u> ,t)                  | 8 | distress index, a matrix function of space and time;            |
| <u>C</u> ( <u>x</u> ,t)          | - | measure of fracture, a matrix function of space and time;       |
| <u>S(x</u> ,t)                   | = | measure of distrotion, a matrix function of space and time;     |
| $\underline{D}(\underline{x},t)$ | = | measure of disintegration, a matrix function of space and time. |

The distress index is a function of the history of the variable shown from time zero to current time t . In a systems framework, the parameters in Eq 7.1 must be quantified from the input parameters. The three modes of distress may be expressed as a function of load, environment, construction, maintenance, and structural variables in space and time.

For fracture:

 $\underline{C}(\underline{x},t)$  is a function of load, environment, construction, maintenance, and structural variables, space and time; (7.2)

For distortion:

 $\underline{S}(\underline{x},t)$  is a function of load, environment, construction, maintenance, and structural variables, space and time; (7.3)

For disintegration:

 $\underline{D}(\underline{x},t)$  is a function of load, environment, construction, maintenance, and structural variables, space and time. (7.4)

The substitution of Eqs 7.2, 7.3, and 7.4 for fracture, distortion, and disintegration into Eq 7.1 gives a measure of a distress index. Based on the riding quality, economics, and safety as required in particular circumstances, acceptable limits to the distress index can be assigned. These limits define the failure of the pavement, thus giving a criterion for pavement design.

### DEVELOPMENT OF DISTRESS INDEX MODEL

Development of an ideal distress index model is a complex problem; however, the AASHO Road Test concept of present serviceability index is recognized as the best to-date effort in this direction. The present serviceability index equation developed in the AASHO Road Test (Ref 70) is a widely accepted statistically derived regression equation which relates the distress manifestations to the present level of service. It has been found that in the view of highway users, the distress index can be very well explained and correlated in terms of

- (1) slope variance SV (Appendix 7), which can be related to disintegration and distortion;
- (2) rut depth RD, which can be related to distortion;
- (3) area of cracking C per thousand square feet, which is related to fracture; and
- (4) area of patching P per thousand square feet, which is related to fracture, disintegration, and distortion.

At the AASHO Road Test, these four factors were measured and the distress index or PSI of the sections was calculated and defined according to the following equation for flexible pavements (Ref 70, Appendix F):

$$PSI = 5.0 - 1.9 \log (1 + \overline{SV}) - 1.375 \overline{RD}^2 - 0.01 \sqrt{C + P}$$
(7.5)

The pavement design models were developed statistically, correlating PSI with axle load, repetitions of load, and the design variables (depths of various layers).

A distress index curve is shown in Fig 7.1. An increase in load repetitions will increase the distress in the pavement. The form of distress development is shown by curves for distress indices for cracking ( $DI_{CI}$ ), rut depth ( $DI_{RD}$ ), and roughness or slope variance ( $DI_{SV}$ ). The cracking index curve shows that although there is cracking at the beginning of Stage III, theoretically actual distress in the pavement due to cracking starts at the beginning of Stage II. Once the visible cracking starts at Stage III, this effect tends to progress rapidly. The pavement has some roughness due to imperfect construction even in the beginning, and the roughness increases further with the number of load repetitions, as shown. The rut depth distress due to permanent DI<sub>CI</sub> = Distress Index due to Cracking DI<sub>RD</sub>= Distress Index due to Rut Depth DI<sub>SV</sub>= Distress Index due to Roughness or Slope Variance DI<sub>TOTAL</sub> = Total Distress Index



Note: For three stages I, II, & III shown above see Chapter H.

Fig 7.1. Distress index curves for flexible pavements.

72

deformation in pavement layers will progress at a decreasing rate. The total distress index curve, as shown, is the total effect of all three distress indices.

$$DI_{TOTAL} = f(DI_{SV}, DI_{RD}, DI_{CI})$$
(7.6)

### QUANTIFICATION OF DISTRESS INDEX MODEL

Examples of various distress mechanisms responsible for distress in pavement are shown in Fig 3.1. For an ideal pavement system design model, all possible distress mechanisms should be taken into consideration. However, for a real-world situation, this is not always possible and a compromise, based on the state-of-the-art, resources, and time, is necessary. Due to the limited scope of the present analysis, a direct consideration of shrinkage and slippage has not been possible. Because the AASHO Road Test was basically a fatigue test of short duration with no apparent effects of swelling clays and major temperature effects, these factors were not considered. The rupture distress mechanism has been computed in terms of the cracking index CI , and distortion in terms of slope variance  $\overline{SV}$  is correlated to CI . Disintegration is one other factor which is not being considered directly in the present analysis.

In the AASHO Road Test, cracking and patching were the measured limiting responses. The measure of this response has been obtained theoretically in this report, based on fatigue and stochastic principles. This has been defined as the cracking index CI . Development of this model is explained in Chapter 8. The distress due to rut depth is represented as the rut depth index RDI , and the model is developed in Chapter 9. The distress due to slope variance, which is the measure of variation of a roadway surface from a desirable profile, is represented in the form of roughness index RI . The roughness index model is detailed in Chapter 10. The verification of the models has been performed with the AASHO Road Test data and is included in Chapter 11.

Based on the above discussion and the performance concept of the AASHO Road Test, the present serviceability index of a flexible pavement can be represented mainly as a function of the cracking index, roughness index, and rut depth index at any time during the pavement performance. If the above three factors are known, an estimate of the pavement performance in terms of PSI can be made.

Mathematically,

$$PSI = f(DI) = f(CI, RI, RDI)$$
(7.7)

where

PSI = present serviceability index, CI = cracking index, RI = roughness index, and RDI = rut depth index.

The steps involved in the development of an actual distress index model from Eq 7.7 are shown in a flow chart in Fig 7.2. This procedure requires the availability of some performance data. Since the procedure developed in this report utilizes the AASHO Road Test concept of performance, the present serviceability index equation, Eq 7.5, is adopted for the distress index model for the present analysis.

### VERIFICATION OF DISTRESS INDEX MODELS

Because the distress manifestations CI , RI , and RDI are considered a very good measure of overall distress, the need to express each as a function of some measurable and well-established material behavior properties, pavement components, load factors, and environment factors in a working model is apparent. If such models are developed, then pavements can be designed rationally and their performance predicted in any arbitrary set of conditions. In the following chapters, such an effort is outlined and the development of the models explained.

The AASHO Road Test is an excellent source of performance data to verify the models developed in Chapters 8, 9, and 10, the measurements for which were obtained under different conditions. Therefore, the AASHO data have been fully utilized to verify the predicted performance curves of the developed models. Because of the extent of the AASHO Road Test, verification and good reproduction of the AASHO data will give confidence in the use of the developed models. Present Serviceability Index-PSI=f(CI, SV, RD)



# Fig 7.2. Flow chart for development of performance model.

Verification of the distress index models developed in this report is detailed in Chapter 11. A typical pavement performance curve is shown in Fig A7.1 of Appendix 7. An attempt has been made in this research to reproduce the observed performance curves of the AASHO Road Test.

• •

### CHAPTER 8. DEVELOPMENT OF CRACKING INDEX MODEL

In this chapter, a model for predicting the cracking index (CI) is developed, using the fatigue theory and Miner's hypothesis (Chapter 4), and stochastic concepts.

### STOCHASTIC CONCEPTS APPLIED TO CRACKING INDEX IN FLEXIBLE PAVEMENTS

Generally, cracking in a pavement structure is considered to be a deterministic phenomenon occurring when the stress is greater than the strength. Both stress and strength in a pavement are subject to stochastic variations, which can be approximated by a continuous normal distribution (Ref 116). The fatigue phenomenon occurs in a pavement, following a predictable relationship between repetition of a load, stress or strain, and material properties. The modulus of elasticity and Poisson's ratio are subject to variations in both space and time, and generally variations of these properties could be approximated by a normal distribution. Therefore, statistical methods and probability theory are required to predict the amount of cracking or the cracking index. In the present model, stochastic concepts for variations in the material properties are applied only to the space variation. The time variation is considered in terms of monthly variations. Fatigue life tests for asphaltic concrete must be made to determine the distribution of fatigue life. The mean value and standard deviation of fatigue life and its relationship to induced strains must be obtained. As already discussed in Chapter 4, fatigue life variations can be approximated by a log normal distribution. Since in fatigue life (the number of stress repetitions N), a log normal distribution is applicable, it is reasonable to assume that the same is applicable to the ratio of actual to theoretical stress applications  $\frac{n}{N}$  .

According to Miner's hypothesis for no distress, the cumulative damage must be less than one, as given by

$$\sum_{0}^{t} \sum_{j=1}^{n} \frac{n_{j}}{N_{j}} \le 1.0$$
 (8.1)

77

 $n_i =$  the actual number of load applications of level j,

N = the number of load applications of level j which will cause failure in simple loading.

Using these values in a statistical analysis, the probability p of distress for cumulative damage being more than 1.0 in a given situation may be computed. In the case of a given area of roadway, it may be said that approximately p percent of the roadway area would experience cracking distress under the given conditions (Refs 78 and 116). Thus, the cracking index is calculated as the probability of  $\sum_{0}^{t} \sum_{0}^{n_{j}} \frac{n_{j}}{N_{j}}$  exceeding one. This probability is represented by the area A beyond log 1.0 value of abcissa of a normal distribution curve, as shown in Fig 8.1. The cracking index represents the distress in a pavement at

any time, in square feet of cracking per thousand square feet. Thus,

$$CI(x,t) = P\left(\sum_{0}^{t} \sum_{j}^{j} \frac{n_{j}}{N_{j}} > 1.0\right) \times 1000$$
(8.2)

where

$$P\left(\sum_{\substack{j \\ 0 \ 0}} \sum_{\substack{j \\ j \\ j}} \sum_{\substack{n_j \\ N_j}} > 1.0\right) = \text{probability of total cumulative damage at} \\ \text{any time for all load groups being more than} \\ \text{one,}$$

= area A (Fig 8.1).

Based on a normal distribution curve, this can be determined from the following equations:

$$\log (D)_{\alpha} = \log (D)_{m} + K \log \sigma_{D}$$
 (8.3)

and



Fig 8.1. Log normal distribution curve for  $\sum_{o}^{t} \sum_{o}^{i} \frac{n_{i}}{N_{i}}$ 



Fig 8.2. Asphaltic concrete fatigue curve.

$$\log (1.0) = \log (D)_{m} + K_{CI} \log \sigma_{D}$$
 (8.4)

where

(D)<sub>\alpha</sub> = total damage at a confidence level 
$$\alpha = \sum_{j=0}^{t} \sum_{j=0}^{j} \left( \frac{n_j}{N_j} \right)_{\alpha}$$
,  
(D)<sub>m</sub> = mean total damage =  $\sum_{j=0}^{t} \sum_{j=0}^{j} \left( \frac{n_j}{N_j} \right)_{m}$ ,

K = normal curve parameter corresponding to confidence level  $\alpha$ ,

$$\sigma_{\rm D}$$
 = standard deviation for damage,

- ${}^{K}_{CI} = normal curve parameter for \sigma_{D} corresponding to other parameters in Eq 8.4,$
- t = time,
- x = position vector of a point referred to in a coordinate system.

From the computed values of other parameters, the value of log  $\sigma_{\rm D}$  can be calculated from Eq 8.3. Then, from Eq 8.4, K<sub>CI</sub> is computed. From the normal tables, the corresponding probability, that is, the area under the normal distribution curve A in Fig 8.1, is obtained. This area A when multiplied by 1000 gives the cracking index.

In staitstical terms, the modulus values of various layers in a pavement may be considered as random variables and can be treated as independent factors. With the special case of statistical independence, the probability of the modulus values of several layers occurring simultaneously is equal to the product of the probability of each occurring independently. Thus, the overall probability is

$$\alpha = \pi^{\ell} \alpha_{i}$$

$$i=1$$
(8.5)

 $\alpha$  = the overall confidence level for modulus values in a pavement structure,

 $\alpha_i$  = the confidence level of the modulus value in the i<sup>th</sup> layer,

 $\ell$  = number of layers in a pavement structure.

The stress and strain caused by a wheel load in a pavement structure, due to variation in modulus values and variation in the fatigue life of surface layer materials, are considered as mutually exclusive. Thus, the probability of the alternative events is equal to the sum of each occurring alone. The overall probability in this case is given by

$$\alpha_{\rm T} = \alpha + \alpha_{\rm N} \tag{8.6}$$

where

 $\alpha_{\rm T}$  = total confidence level for damage or failure load repetitions,  $\alpha$  = overall confidence defined by Eq 8.5,  $\alpha_{\rm N}$  = confidence level assumed for calculation of fatigue life.

# QUANTIFICATION OF CRACKING INDEX

The cracking index is calculated for a particular pavement on the basis of its structural components, expected traffic, the period for which the facility will be used, fatigue behavior, and stochastic variations in the material properties. Mathematically, this can be represented as

$$CI(x,t) = f\left[\sigma_{j}(x,t), \epsilon_{j} - N_{j}(x,t), n_{j}(t)\right]$$
(8.7)

where

$$\sigma_{j}(x,t) = f \left[ E_{i}(x,t), \mu_{i}(x,t), D_{i}(x,t), W_{j} \right]$$
(8.8)

$$\left[\epsilon_{j} - N_{j}(x.t)\right]$$
 = the asphaltic concrete fatigue curve (Fig 8.2).

From the equation of the asphaltic concrete fatigue curve, the mean fatigue life at any time t is given by

$$N_{j}(t) = A\left(\frac{1}{\epsilon_{j}(t)}\right)^{\beta}$$
(8.9)

or

$$\log N_{j}(t) = \log A + \beta \log \left(\frac{1}{\epsilon_{j}(t)}\right)$$
(8.10)

Assuming that the asphaltic concrete fatigue life variation in space x at any time t can be approximated by a log-normal distribution

$$\log N(x,t) = \log N_{i}(t) \pm K \log \sigma_{N}$$
(8.11)

Combining Eqs 8.10 and 8.11 for both space and time,

$$\log N_{j}(x,t) = \log A + \beta \log \left(\frac{1}{\epsilon_{j}(t)}\right) \pm K \log \sigma_{N}$$
(8.12)

where

 $^{\sigma}\mathbf{j}$ 

- CI = cracking index of the surface material, measured in square feet per thousand square foot;
  - stress in the surface material of level j , in psi units;
- e = flexural tensile strain in the surface material of level
  j, in inches per inch;
- N = the number of load applications of level j to cause failure;

| n<br>j                | 2 | the number of actual load applications of level j;                            |
|-----------------------|---|-------------------------------------------------------------------------------|
| <sup>E</sup> i        |   | elastic modulus of the i <sup>th</sup> layer in a pavement structure, in psi; |
| μ <u>1</u>            | = | Poisson's ratio of the i <sup>th</sup> layer in a pavement structure;         |
| D <sub>i</sub>        | = | depth of the i <sup>th</sup> layer in a pavement structure;                   |
| W<br>j                | = | applied wheel load of level j on the pavement structure;                      |
| A                     | = | constant of asphaltic concrete fatigue equation;                              |
| β                     | = | constant of asphaltic concrete fatigue equation;                              |
| К                     | = | normal distribution curve parameter;                                          |
| $\sigma_{\mathbf{N}}$ | 2 | standard deviation of fatigue curve;                                          |
| (x,t)                 | = | function of space and time.                                                   |

# Modulus of Elasticity

For the elastic modulus values of the materials used in a pavement, the time variation is considered in terms of monthly variations. As explained in Chapter 5, the values of the modulus depend upon many factors and these values vary with time. Actually, the smaller the time interval considered, the better the simulation. However, to limit the computation work, a monthly variation was considered reasonable for the development of the cracking index model

$$E_{i}(t) = f[E_{i1}, E_{i2}, ..., E_{i11}, E_{i12}]$$
 (8.13)

where

- E = average elastic modulus value of the i<sup>th</sup> layer material for January,
- E = average elastic modulus value of the i<sup>th</sup> layer material for February, etc.

Typical variations in monthly modulus values for pavement layers of AASHO Road Test sections are included in Chapter 5 and shown in Fig 8.3.



(b) Variation in space.

Fig 8.3. Conceptual diagram showing variation of modulus E in both space and time.

For the space variation, it is assumed that the modulus values are normally distributed and variation can be represented by a normal distribution curve (Fig 8.3). The density function of such a distribution in space is given by -2

$$f(E_{i}) = \frac{1}{\sigma_{Ei}\sqrt{2\pi}} \cdot e^{\frac{-(E_{i} - E_{i})^{2}}{2\sigma_{Ei}^{2}}}$$
(8.14)

and, based on Eq 8.14, the value of elastic modulus in space  $E_i(x)$  is given by

$$E_{i}(x) = \overline{E}_{i} \pm K \cdot \sigma_{Ei}$$
(8.15)

where

 $\overline{E}_i$  = arithmatic mean of the distribution,  $\sigma_{Ei}$  = standard deviation of modulus values,  $\pi$  = constant, and e = constant.

To combine space and time variations, the final value of the modulus in both space and time is given by

$$E_{i}(x,t) = \overline{E}_{it} \pm K \cdot \sigma_{Eit}$$
(8.16)

# Poisson's Ratio

In a sensitivity study, Buttler (Ref 15) found that magnitudes of the strain values in the surface layer calculated by the layered program are not significantly affected by variations in the Poisson's ratio. Therefore, this parameter is taken as a constant for each material in these developments.

$$\mu_{i}(x,t) = \mu_{i}$$
(8.17)

### Layer Thickness

In a real-world situation, the thickness of any layer varies in both space and time. With the best construction control, small variations in thicknesses in space cannot be avoided. The load, environment, and variation in material properties can cause variation in this parameter with time. However, the variations in the layer thickness are not considered of much significance in these developments. Therefore,

$$D_{i}(x,t) = D_{i}$$

$$(8.18)$$

where

$$D_i = \text{thickness of the i}^{\text{th}}$$
 layer.

# Applied Load

The effect of different wheel loads is considered by summation of the damage caused by each load group in Miner's hypothesis.

## PROCEDURE FOR MODELING THE CRACKING INDEX

The flow chart for modeling the cracking index in a typical pavement structure (Fig 8.4) is shown in Fig 8.5. The various steps required are

- (1) From the given monthly values of  $\overline{E}_i$ ,  $\sigma_{Ei}$ , and the assumed confidence level  $\alpha_i$ , calculate the  $E_i(x,t)$  values of materials with Eq 8.16.
- (2) Use the layered program and input  $E_i(x,t)$  from step 1 and  $\mu_i$ , axle load, tire pressure, and layer thicknesses to compute the tangential strains at the bottom of the surface layer.
- (3) Calculate the overall confidence level  $\alpha$  from Eq 8.5.
- (4) From Eqs 8.10 and 8.11, calculate the theoretical values of N , both the mean and at some confidence level, considered.  ${}^j$
- (5) Calculate the overall confidence level for damage from Eq 8.6.

(6) From the given values of  $n_j$ , calculate cumulative damage

for each month and for each load group. In the process, the mean, as well as the value at a certain confidence level, have been calculated.

86



-

.

•

.

Fig 8.4. Typical flexible pavement section.



Fig 8.5. Flow chart for modeling the cracking index.

(7) Calculate the cracking index, as discussed earlier, from Eqs 8.2, 8.3, and 8.4.

### COMPUTER PROGRAM

As can be seen, it is difficult to make all the necessary calculations by hand. Therefore, a computer program was developed to calculate the final cumulative cracking index values every month. The flow chart of the computer program is shown in Fig A4.1. The computer program follows the steps shown in Fig 8.5 in calculating the cracking index in a pavement structure. The input to the program consists of the parameters listed in the boxes on the lefthand side of this figure. The middle boxes show the sequence of the output based on the criteria in the right-hand boxes and the corresponding input. This computer program is written for the CDC 6600 computer in FORTRAN language. This computer program can be used directly for the design of flexible pavements and can also be included in the pavement system design computer program previously developed for the Texas Highway Department. However, efforts to make this computer program more efficient should continue.

# CHAPTER 9. DEVELOPMENT OF RUT DEPTH INDEX MODEL

In this chapter, a model for predicting the rut depth index is presented. The vertical and radial stresses in a pavement system are computed from the layered analysis. The repeated load-deformation characteristics of the materials under triaxial testing are used. The rut depth may be represented as a permanent portion of the total deformation in a pavement structure due to repetition of loads. The deformation computations are made on the basis of mean values of the parameters, without considering the stochastic variations in space.

### QUANTIFICATION OF RUT DEPTH INDEX MODEL

Figure 9.1 outlines the procedure developed to compute rut depth in a pavement structure. The rut depth is calculated in terms of permanent deformation in different layers due to repeated loading. The vertical deformation in an asphaltic concrete layer is very small relative to other layers and thus is not considered. The total deformation consists of the sum of the deformations in all the layers below the surface layer. Mathematically, rut depth in the pavement is represented as:

Rut depth 
$$\overline{RD}(t) = f \left[ \sigma_{ij}(t), (\varepsilon - n)_{i}, n_{j}(t) \right]$$
 (9.1)

where

$$\sigma_{ij}(t) = f \left[ E_{i}(t), \mu_{i}(t), D_{i}(t), W_{j} \right]; \qquad (9.2)$$

(t) = function of time;



.

 $\overline{RD} = f \left[ applied \ load \ , \eta_j, E_i, \mu_i, repeated \ load \ v/s \ deformation \ curve \right]$ 

Fig 9.1. Flow chart for quantification of rut depth index.

 $n_{j} = number of load applications of level j;$   $\mu_{i} = Poisson's ratio of the i<sup>th</sup> layer;$   $E_{i} = elastic modulus of the i<sup>th</sup> layer, in psi;$   $D_{i} = depths of the i<sup>th</sup> layer, in inches;$   $(\epsilon - n)_{i} = repeated load deformation curve for the i<sup>th</sup> layer;$   $\epsilon_{i} = permanent vertical strain in the i<sup>th</sup> layer.$ 

### Load Deformation Curves

In triaxial loading, the permanent deformation of a particular layer depends upon the number of load repetitions and vertical and confining stresses. Load deformation curves and regression equations developed from these curves, required to calculate the permanent deformation in various layers, were discussed in Chapter 5. These curves and regression equations give an estimate of the permanent strain and deformation in each layer in terms of vertical stress, confining stress, and number of stress repetitions.

#### Vertical and Confining Stresses

Vertical and confining stresses are considered in two catagories:

- (1) Those due to wheel load, for which stresses are calculated from the layered program. The means of the stresses at the bottom and of those at the top of each layer represent the vertical and confining stresses due to wheel load.
- (2) Those due to overburden, for which stresses in each layer are calculated as follows:

| Layer    | Effective Height<br>of Overburden<br>h <sub>i</sub> , inches | Effective Weight<br>of Overburden<br><sup>Y</sup> di, pci                                                                       |
|----------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Base     | $D_1 + D_2/2$                                                | $\frac{1}{\text{hi}}(\gamma_{\text{AC}} \times D_1 + \gamma_{\beta} \times 0.5D_2)$                                             |
| Subbase  | $D_1 + D_2 + D_3/2$                                          | $\frac{1}{\text{hi}}(\gamma_{\text{AC}} \times D_1 + \gamma_{\beta} \times D_2 + \gamma_{\text{S\beta}} \times 0.5 \times D_3)$ |
| Subgrade | $D_1 + D_2 + D_3$                                            | $\frac{1}{\text{hi}}(\gamma_{\text{AC}} \times D_1 + \gamma_{\beta} \times D_2 + \gamma_{\text{S\beta}} \times D_3)$            |

$$\sigma_{iro\beta} = \gamma_{di} \cdot h_{i} \cdot \frac{\mu_{i}}{1 - \mu_{i}}$$
(9.3)

$$\sigma_{izo\beta} = \gamma_{di} \cdot h_{i}$$
(9.4)

where

$$Y_{AC}, Y_{\beta}$$
 = unit weight of asphalt concrete, base, etc., pci;  
 $\sigma_{iro\beta}$  = radial stresses due to overburden in the i<sup>th</sup> layer,  
 $\sigma_{izo\beta}$  = vertical stresses due to overburden in the i<sup>th</sup> layer,  
 $\mu_{i}$  = Poisson's ratio of the i<sup>th</sup> layer;  
 $\gamma_{di}$  = effective weight of overburden, pci.

Final stresses to compute the deformation in each layer are obtained from the following equations:

$$\sigma_{ir} = \sigma_{izo\beta} + \sigma_{irl}$$
(9.5)

$$\sigma_{iz} = \sigma_{izo\beta} + \sigma_{izl}$$
(9.6)

where

.

•

- -

$$\sigma_{ir} = \text{total radial stress in the } i^{\text{th}} \text{ layer, psi;}$$
  

$$\sigma_{iz} = \text{total vertical stress in the } i^{\text{th}} \text{ layer, psi;}$$
  

$$\sigma_{ir\ell} = \underset{psi;}{\text{mean radial stress in the } i^{\text{th}} \text{ layer due to wheel load,}}$$
  

$$\sigma_{iz\ell} = \underset{psi.}{\text{mean vertical stress in the } i^{\text{th}} \text{ layer due to wheel load,}}$$

### Elastic Modulus

Elastic modulus for each layer is considered monthly; i.e.,

$$Ei(t) = f[E_{i1}, E_{i2}, ..., E_{i11}, E_{i12}]$$
 (9.7)

where

$$E_{i1}$$
 = average modulus value of the i<sup>th</sup> layer for January,  
 $E_{i2}$  = average modulus value of the i<sup>th</sup> layer for February, etc.

### Applied Wheel Load

For various load groups, equivalent repetitions in terms of one single load group can be calculated as portrayed in Fig 9.2. Chan (Ref 20) found a linear relationship for total strain versus the log of the number of repetitions for several sands and gravel. Therefore, a straight-line relationship between the cumulative permanent strain  $\epsilon$  and the logarithm of the number of load repetitions log N for materials of various pavement layers, other than the surface asphaltic concrete layer, is assumed. However, similar computations can be made if the straight-line relation is different from the assumed one. The equivalent repetitions are calculated in terms of the heaviest load eroup to give the least error in this computation. It is also assumed that load group h is the heaviest load group. For equivalent permanent strain (Fig 9.2),

$$\frac{\log N_i}{\varepsilon_i} = \frac{\log n_h}{\varepsilon_h}$$
(9.8)

or

$$N_{i} = 10.0 \qquad \begin{pmatrix} \frac{\log n_{h}}{\epsilon_{h}} \cdot \epsilon_{i} \end{pmatrix} \qquad (9.9)$$

Total equivalent repetitions in terms of h load group, say  $\underset{\mbox{ht}}{\mbox{N}}$  , is given by


Note: The number on the curves represents the load group.

Fig 9.2. Development of equivalent load repetitions for one load group in terms of other load group.

$$N_{ht} = N_1 + N_2 + \dots + N_h = \sum_{i} N_i$$
 (9.10)

Combining Eqs 9.9 and 9.10,

$$N_{ht} = \sum_{h} 10.0 \frac{\begin{pmatrix} \log n_h \times \hat{\epsilon}_i \\ \vdots \\ h \end{pmatrix}}{(9.11)}$$

where

- N<sub>i</sub> = equivalent number of load repetitions of load group of level i in terms of heaviest load group h ,
- n; = actual load repetitions of load group of level i,
- N<sub>ht</sub> = total equivalent load repetitions in terms of heaviest load group,
- $\epsilon_i$  = total permanent strain corresponding to load group  $n_i$ .

## Permanent Strain in a Particular Month

Due to monthly variation in the material properties, the same load group creates different stress conditions in each layer each month. To find the cumulative deformation in each layer in a particular month, the net permanent strain caused by a particular load group in that month is required. This permanent strain in each layer, in percent inches per inch, is obtained from the difference of the permanent strain corresponding to the number of load repetitions at the beginning and at the end of that month.

$$\epsilon_{ip}(t) = \epsilon_{iE}(t) - \epsilon_{iB}(t)$$
(9.12)

. 1

where

$$\epsilon_{iB}(t) = \text{permanent strain in the i}^{th}$$
 layer for the  $t^{th}$  month  
and at the beginning of that month;

$$\varepsilon_{iE}(t) = same as \ \varepsilon_{iB}(t)$$
, but at the end of the month.

## Permanent Deformation

The permanent deformation for each month in the pavement is calculated as

$$\Delta_{i}(t) = \epsilon_{ip}(t) \cdot D_{i} \cdot \frac{1}{100}$$
(9.13)

$$\Delta(t) = \sum_{i=1}^{\ell} \Delta_{i}(t) \qquad (9.14)$$

where

- $\Delta(t)$  = permanent deformation in the whole pavement structure in the t<sup>th</sup> month, in inches;
- l = number of layers.

## Cumulative Deformation or Rut Depth

The rut depth in a particular month is represented by the cumulative deformation of the pavement structure from the beginning of the pavement facility to the end of that month. Mathematically, the rut depth is given by:

$$\overline{RD}(t) = \sum_{o}^{t} \Delta(t)$$
 (9.15)

Therefore, knowing the monthly deformations  $\Delta(t)$ , the rut depth is calculated by Eq 9.15.

#### PROCEDURE TO COMPUTE THE RUT DEPTH

The steps in the calculation of rut depth, shown in Fig 9.1, are

- From the axle load, modulus of elasticity of various layers, tire pressure, Poisson's ratio, and thickness of layers, compute the vertical and radial confining stresses at the top and bottom of each layer.
- (2) Compute the total radial and vertical stresses in each layer due to overburden and wheel load from Eqs 9.5 and 9.6.
- (3) Input the repeated load deformation curves obtained from the field for each layer except for the asphaltic concrete surface layer. Regression equations used in the computer program are developed in Chapter 5 from the repeated load-deformation data (Eqs 5.3, 5.4, and 5.5). Compute permanent strain corresponding to stress conditions and number of load repetitions at the beginning and end of each month for each load group.
- (4) Calculate the equivalent repetitions in terms of the single heaviest load group, using Eq 9.9.
- (5) Again compute the permanent strain from the regression equations at the beginning and end of each month (as in item 3), but only for the heaviest load group for the equivalent number of repetitions calculated in item 4.
- (6) For each month, the permanent strain in each layer is calculated from the difference of the strain values corresponding to the number of load repetitions at the beginning and end of that month from Eq 9.12.
- (7) From the permanent strain in each layer for each month, the total permanent deformation in the individual layers and for the whole pavement for each month is calculated with Eqs 9.13 and 9.14.
- (8) Finally, cumulative deformation for each month, representing the rut depth in the pavement is calculated by Eq 9.15.

## COMPUTER PROGRAM

The whole procedure for computing the expected rut depth is too lengthy to handle by hand calculations. Therefore, a computer program has been written which solves all the above mentioned steps and computes the values of the expected rut depth. To reduce the work of the designer, this part of the computer program is combined with the program developed for calculation of the cracking index in Chapter 8. The program has the alternative that either or both cracking index and rut depth values can be computed. Because most of the input data for calculation of rut depth and the cracking index are common to the combined program, manual as well as computer time is saved in solving a problem. Moreover, this one computer program is easier to include in the existing flexible pavement system computer program. At present, the model does not consider the stochastic variations in space. This may be done at the time of detailed stochastic studies of various variables in the present flexible pavement system.

1

As indicated in Chapter 8, the computer program, flow chart, input guide, and sample input and output are enclosed in Appendix 4.

## CHAPTER 10. DEVELOPMENT OF ROUGHNESS INDEX MODEL

In this chapter, a model for quantification of roughness index is developed. It is hypothesized that the trend in the cracking index is a good indicator of the trend in the roughness index, and a correlation is established between the cracking index and the roughness index. Thus, a model is presented for roughness index in terms of axle load, number of axles, depth of pavement layer, and cracking index.

## THEORY

Cracking in an asphalt surface has long been used as a direct indication of a structural inadequacy somewhere in a pavement system, and cracking was used as the principal criterion of pavement failure at the WASHO Road Test (Ref 74). Cracking and patching were found to be of only minor significance in the performance model of a pavement at the AASHO Road Test (Ref 70), but that does not mean cracking is of minor structural importance. By the time fatigue cracking due to repeated loading has progressed enough to greatly impair the riding quality of a pavement, the pavement becomes very rough in terms of slope variance, and the slope variance or roughness index in the AASHO Road Test represented most of the detrimental effects of cracking (Ref 139). It can be assumed that fatigue cracking due to repeated loading is a good indicator of the roughness caused due to fatigue loading. Thus, a good correlation exists between the cracking index and the roughness index. The following comments of NCHRP Project 39 (Ref 42) support the above hypothesis very well:

"Careful examination of the criterion and the basic measurements tends to indicate that a significant amount of the drop in riding quality must have been due to the longitudinal roughness associated with fatigue cracking."

A mathematical correlation between the roughness index, in terms of the cracking index, and pavement structural elements is hypothesized as:

$$RI(x,t) = f\left[CI(x,t), D_{i}, W_{j}, L_{j}\right]$$
(10.1)

| RI             | = | roughness index,                                      |
|----------------|---|-------------------------------------------------------|
| CI             | = | cracking index,                                       |
| (x,t)          | = | function of space and time,                           |
| D <sub>i</sub> | = | thickness of the i <sup>th</sup> layer in a pavement, |
| W<br>j         | = | axle load in kips of level j ,                        |
| L <sub>i</sub> | = | single or tandem axle of the load $$ j .              |

In correlating slope variance and cracking-patching from observed data, it seems that each has a direct relationship with the number of repetitions of a particular load (Ref 139). Figure 10.1 shows a typical example of such a relationship. The relationship between cracking-patching and slope variance, depending upon the various values for structural elements of the pavement and the load, can be represented by the following equation.

$$SV = A + B\sqrt{CP}$$
(10.2)

The values of A and B will depend upon the pavement structural element and load group, or

$$A = f(C_{i}, D_{i}, W_{i}, L_{i})$$
(10.3)

$$B = f(C_{i}, D_{i}, W_{i}, L_{i})$$
(10.4)

where

SV = slope variance,

CP = measured crack-patching,



Sv<sub>o</sub>=Initial Value of the Slope Variance Sv<sub>t</sub>=Slope Variance at any Time t C+P = Cracking and Patching CI = Cracking Index

Fig 10.1. Typical example of relationship between cracking-patching, slope variance and number of load repetitions of a particular load.

C<sub>i</sub> = some coefficient to show the relative importance of various layers in a pavement.

and SV is given by

$$RI = \log (1 + SV)$$
 (10.5)

Based on the above hypothesis (Eqs 10.1 and 10.2), AASHO Road Test data are analyzed later in this chapter to obtain a correlation between the roughness index based on measured values and cracking-patching. Only the load-associated distress is considered in the work reported here and thus, the AASHO Road Test data are used because they are primarily fatigue load data, with no significant effects of nonload-associated distress. The procedure and steps involved for the above analysis are shown in Fig 10.2. Through the regression analysis (Ref 18), trying various functions, a suitable model is obtained for a correlation between the dependent variable slope variance (to be predicted) and independent variables, cracking-patching, layer thicknesses, etc. (known).

# QUANTIFICATION OF ROUGHNESS INDEX

Two approaches to quantification of the roughness index are discussed in this section, one based on literature and one on regression analysis.

#### Quantification Based on Literature

A literature review shows that the quantification of a roughness index is possible from the available information on AASHO Road Test results. The results of an analysis of AASHO Road Test data by the Asphalt Institute (Ref 139) include equations of the following forms:

$$\sqrt{SV_t} = \sqrt{SV_o} + bN_t$$
(10.6)

$$\overline{RD}^2 = bN_t$$
(10.7)

$$\sqrt{CP} = bN_{t}$$
(10.8)





- -

.

 $SV_t$  = slope variance at any time t ,  $SV_o$  = slope variance of the pavement at the time of construction, b = rate of deterioration,  $N_t$  = accumulated load applications to time t ,  $\overline{RD}$  = rut depth.

The rate of deterioration b was shown to depend on the thicknesses and struccural coefficients of different layers, subgrade strength, and load parameter:

$$\log b = a_0 + a_1 D_1 + a_2 D_3 + a_4 L + a_6 WP$$
(10.9)

where

L = factor representing axle load group,

WP = factor for outer or inner wheel path.

Painter also obtained some numerical correlations for Eqs 10.6 to 10.9. Based on his work, the correlation between cracking-patching is

$$D_1 + 0.284D_2 + 0.228D_3 = 9.403 + 2.931 \log W_{18}$$

$$-1.466 \log CP + \log F$$
 (10.10)

and slope variance is

$$D_1 + 0.313D_2 + 0.2D_3 = 7.412 + 3.477 \log W_{18}$$
  
- 3.477 log ( $\sqrt{SV} - \sqrt{SV_0}$ ) + log F (10.11)

 $W_{18}$  = millions of accumulated load applications of 18-kips load, F = climate factor.

Combining Eqs 10.10 and 10.11 to eliminate log  $W_{18}$  and combining terms gives

$$Log (\sqrt{SV} - \sqrt{SV_0}) = 0.053D_1 + 0.007D_2 + 0.0201D_3$$
  
- 1.075 - 0.053 log F + 0.5 log (CP) (10.12)

In the Painter's analysis, the average value for F was found to be 4.0. Eliminating log F between Eqs 10.10 and 10.11:

$$0.029D_2 - 0.028D_3 = -1.991 + 0.546 \log W_{18}$$
$$- 3.477 \log (\sqrt{SV} - \sqrt{SV}_0) + 1.466 \log (CP)$$
(10.13)

Thus, Eqs 10.12 and 10.13 can be used for predicting the slope variance from the known value of cracking-patching, thickness of pavement layers, and equivalent 18-kip load applications.

## Quantification Based on Regression Analysis

In Eqs 10.10 and 10.11, the loads were converted to single-axle 18-kip equivalents (based on values in Ref 139, Table 3, and page 26); hence, no terms for load and number of axles appear in Eq 10.12. However, based on the discussion earlier in this chapter and Painter's analysis, a general relationship between roughness index and cracking-patching would be expected to be

$$\log (1 + \sqrt{SV} - \sqrt{SV_0}) = A_1 + A_2 D_1 + A_3 D_2 + A_4 D_3$$
$$+ A_5 W + A_6 L + A_7 \log (1 + CP)$$
(10.14)

 $A_1$ ,  $A_2$ , etc. = constants of the regression equation, SV = slope variance at any value of cracking-patching (CP), $SV_0 = initial slope variance of the pavement.$ 

Using data for various AASHO Road Test sections (Table 10.1), a regression analysis was conducted. The data consist of representative sections, constituting various observations for the analysis which could be performed within a reasonable time and efforts under the scope of the project. The data for the analysis represent various loops, load groups, and combinations of thicknesses of various layers of the AASHO Road Test sections. In this analysis, computer program STEP-01 (Ref 18) was used. Input and output of the computer program, used for the regression analysis, are given in Appendix A4.5. Results of this analysis are consolidated in Table 10.2. On the basis of regression analyses alone, one term,  $[\log (1 + CP)]^2$ , i.e., first step, had a correlation coefficient  $R^2$  of 0.9289 and should be considered best for the proposed correlation between cracking-patching and slope variance for interpolation of results within the data analyzed, because the additional terms did not improve the value of the correlation coefficient or standard error of residual. However, from the engineering point of view, based on the earlier discussions (Eq 10.14), and for extrapolation of results from the available information, the inclusion of other terms in the correlation may be considered desirable. During the analyses of data, it was also seen that the first step in the regression analysis produced seven points which are more than twice the standard error away from the desired value, as against four points in the case of the eighth step. Also, the highest error of prediction is lower in step 8 in comparison to step 1. Addition of a few terms in case of computation by computers does not involve any significant difference in time or labor. Moreover, during the

# TABLE 10.1 SECTIONS CONSIDERED FOR REGRESSION ANALYSIS FOR RI V/S CP CORRELATION (AFTER REF 70)

۰.

•

| Loop 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Loop 2                                                                                | Loop 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Loop 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Loop 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Loop 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Axle Load                                                                             | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lane I Lane 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lane I Lane 2                                                                         | Lane I Lane 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lane I Lane 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane I Lane 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane I Lane 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,000-5 6,000-5                                                                       | 12,000-S 24,000-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,000-5 32,000-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22,400-5 40,000-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,000-5 48,000-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Main Factorial Design<br>Design 1                                                     | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level of the section | a José Servision Ni<br>A Line Lone Lone<br>Line Lone Lone Lone<br>Line Lone Lone Lone | A. Test Section No.<br>Thick deservess<br>Thick deservess<br>Th | Test Section No.<br>Thickness<br>Scurtace<br>Scurtace<br>Test Section No.<br>Table Section<br>Table Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Section No.<br>Sector 20 Sector No.<br>Sector 20 Sector No.<br>Sector 20 Sector 20 Sector No.<br>Sector 20 Sector 20 Sector No.<br>Lane Lane<br>No.<br>Sector 20 Sector 20 Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thickness<br>Thickness<br>Thickness<br>Table Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table |
| O 857 85<br>B 867 86<br>B 833 83<br>I6 841 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 721 722<br>4 727 728<br>0 7430 744<br>4 7170 718                                  | 0 1 065 166<br>4 3 125 126<br>8 2 143 144<br>8 2 153 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>4 1 633 634<br>8 2 6070 608<br>12 3 571 572<br>12 3 569 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3 \frac{4}{12} + \frac{1}{485} + \frac{485}{486} + \frac{486}{452} + \frac{486}{3} + \frac{452}{12} + \frac{1}{3} + \frac{1}{416} + $ | $3 \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6 0 827 821<br>6 8 847 84<br>16 839 84<br>0 859 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 0 755 756<br>4 719 7201<br>0 771 772<br>4 77298 730                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 3 \\ 6 \\ \hline 8 \\ 12 \\ 12 \\ 14 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 4 \\ 6 \\ \hline 12 \\ 16 \\ \hline 12 \\ 16 \\ \hline 13 \\ 253 \\ 253 \\ 253 \\ 254 \\ \hline 255 \\ 255 \\ 255 \\ 255 \\ \hline 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 \\ 255 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 863 86<br>869 87<br>8 869 83<br>829 83<br>16 837 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 825 820<br>851 85<br>8 875 87<br>819 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 0 775 776<br>757 758<br>4 737 736<br>711 712<br>0 700 737                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 1 66270 628<br>3 8 2 597 598<br>12 3 575 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 823 82<br>0 865 86<br>16 877 87<br>5 0 871 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4         2         595         6596           6         8         3         577         578           12         1         66254         626           4         2         605         606           2         2         57         578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8         2         313         314           9         12         1         331         332           16         3         265         266           8         2         297         298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 8 849 850<br>16 879 88<br>16 873 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface Treatment Study                                                               | 0 4 2 141 142<br>8 1 153 154<br>0 2 145 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5 \begin{array}{c} 5 \\ 6 \\ 5 \\ 6 \\ 8 \\ 1 \\ 4 \\ 5 \\ 6 \\ 8 \\ 1 \\ 4 \\ 6 \\ 9 \\ 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Subsurface Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e s s s s s s s s s s s s s s s s s s s                                               | 4 3 4 1 151 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1 629 <b>G</b> 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H6 2 301 302<br>8 3 263 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Se sign 5<br>Test Section N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ST Side Side Side Side Side Side Side Side                                            | $6 \begin{array}{c c} 0 & 1 & 6 & 15 \\ \hline 0 & 1 & 1496 & 150 \\ \hline 4 & 3 & 123 & 124 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 1 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 <u>1 4835 484</u><br><u>8 2 447 448</u><br><u>12 3 427 428</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 <u>3 271 272</u><br>12 2 311 <u>312</u><br>16 1 333 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 861 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$                   | Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 0 8 83i 83i<br>853 854<br>16 817 818<br>0 855 856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>4<br>725<br>726<br>726<br>768<br>768<br>768<br>766<br>766<br>768                 | Province service servi                                                                                                                                                                                                                                                 | Shoulder<br>Pavinger<br>Antroce<br>Thickness<br>Pavinger<br>Thickness<br>Pavinger<br>Thickness<br>Pavinger<br>Totane<br>Tail<br>Fore<br>Fore<br>Fore<br>Fore<br>Fore<br>Fore<br>Fore<br>Fore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shoulder<br>Poving<br>Shoulder<br>Shoulder<br>Thickness<br>I Thickness<br>I Thickness<br>I Thickness<br>I Thickness<br>I Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Participation of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 6 843 844<br>16 835 836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 747 748<br>735 736<br>761 762                                                       | 2 3 0 177 178<br>179 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>3</b> 0 <b>4 6</b> 37 <b>6</b> 38 <b>6</b> 09 <b>6</b> 10 <b>5</b> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 3 8 291 292<br><del>275 276</del><br><del>4</del> 3 8 291 292<br><del>275 276</del><br><del>293</del> 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NOTE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 713 714                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         6         4         611         612           5         0         4         639         640           5         0         4         613         614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥         5         9         4         405         406           5         3         4         433         434           409         410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$         4         5         16         273         274           6         3         8         295         296           277         278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Shaded secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons are replicates                                                                    | Base Type Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base Type Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Base Type, Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Base Type Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dotted secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons are considered                                                                    | w s s s s s Test Section No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Section No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e % % Test Section No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e g g g Test Section No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| for RI v/s C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P correlation.                                                                        | Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thickness<br>Thickness<br>Thickness<br>Thickness<br>Table Table<br>Table<br>Table<br>Table<br>Table<br>Table<br>Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thickness<br>Types<br>Thickness<br>Thickness<br>Thickness<br>Tables<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>The traction<br>Thickness<br>The traction<br>Thickness<br>The traction<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thickness<br>Thic                                                                     | Thickne Fanse Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| are compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for PI obcorred                                                                       | Crush 3 2-14 0 169 170<br>Stone 3 2-14 0 169 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Crush 3 2-16 4 567 568<br>Store 3 2-16 4 563 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gravel 3 3-18 4 467 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crush. 4 3-19 8 287 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and computed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from proposed                                                                         | Gravel 3 2-14 0 171 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gravel 3 2-16 4 565 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 3 3-16 4 463 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit. 4 3-18 4 285 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | riom proposed                                                                         | Bit.<br>Treat. 3 2-11 0 167 168<br>101 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cem 3 2-10 4 563 564<br>Treat 3 2-10 4 557 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cem. 3 3-12 4 465 466<br>Treat 3 3-12 4 461 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cem. 4 3-13 4 289 290<br>Treat. 4 3-13 4 281 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

108

-

|                                                              | Residuals                                                                                                                                                                                                                                                                                                                                                                                                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                | R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constt.<br>SQLCP                                             | 0.0680                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9638                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Constt.<br>LCP                                               | 0.0671                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9651                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SQLCP<br>Constt.<br>LCP                                      | 0.0669                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9657                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D <sub>2</sub><br>SQLCP                                      | 0.0(70                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCP<br>D <sub>2</sub>                                        | 0.0670                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9660                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L<br>SQLCP<br>Constt                                         | 0.0665                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9660                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP                     | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9009                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Constt.<br>LCP<br>D <sub>1</sub><br>D <sub>2</sub><br>W<br>L | 0.0668                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9669                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              | Constt.<br>SQLCP<br>Constt.<br>LCP<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>L<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>L<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt.<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP | Constt. 0.0680<br>SQLCP<br>Constt. 0.0671<br>LCP<br>SQLCP<br>Constt. 0.0669<br>LCP<br>D <sub>2</sub><br>SQLCP<br>Constt. 0.0670<br>LCP<br>D <sub>2</sub><br>L<br>SQLCP<br>Constt. 0.0665<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt. 0.0665<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt. 0.0665<br>LCP<br>D <sub>2</sub><br>W<br>L<br>SQLCP<br>Constt. 0.0668<br>LCP<br>D <sub>1</sub><br>D <sub>2</sub><br>W<br>L<br>SQLCP | Constt.       0.0680       0.9638         SQLCP       0.0671       0.9651         LCP       0.0669       0.9657         SQLCP       0.0669       0.9657         Constt.       0.0669       0.9660         LCP       0.0670       0.9660         LCP       0.0670       0.9660         LCP       0.0665       0.9669         LCP       0.0665       0.9669         LCP       0.0665       0.9669         LCP       0.0665       0.9669         LCP       0.0668       0.9669         L       0.0668       0.96 |

| TABLE 10.2. | RESUL | r of i | REGF | RESSION  | ANALYSIS | FOR  | CRACKING-PATCHING |
|-------------|-------|--------|------|----------|----------|------|-------------------|
|             | (CP)  | VERS   | US F | ROUGHNES | S INDEX  | (RI) |                   |

. •

,

....

(Continued)

| Step<br>Number                                                                    | Variables                                           | Residuals | R      | R <sup>2</sup> |
|-----------------------------------------------------------------------------------|-----------------------------------------------------|-----------|--------|----------------|
| 7. Constt.<br>LCP<br>D <sub>1</sub><br>D <sub>2</sub><br>D <sub>3</sub><br>W<br>L |                                                     | 0.0670    | 0.9671 | 0.9353         |
| 8.                                                                                | SQLCP<br>Constt.<br>LCP<br>D1<br>D2<br>D3<br>W<br>L | 0.0674    | 0.9692 | 0.9354         |

TABLE 10.2. (Continued)

INDEPENDENT VARIABLES

SQLCP

| LCP            | = | Log (1 + CP)                                                 |
|----------------|---|--------------------------------------------------------------|
| <sup>D</sup> 1 | Ξ | Depth of A. concrete                                         |
| D <sub>2</sub> |   | Depth of base                                                |
| D <sub>3</sub> | = | Depth of subbase                                             |
| W              | = | Axle load                                                    |
| L              | = | <ol> <li>For single axle</li> <li>For tandum axle</li> </ol> |
| SQLCP          | ÷ | $[Log (1 + CP)]^2$                                           |
| CBLCP          | = | $[Log (1 + CP)]^3$                                           |

# DEPENDENT VARIABLES

Arctan. Log  $(1 + \sqrt{SV_i} - \sqrt{SV_o})$ When:  $SV_i = Slope variance at any time$ 

analysis, it was observed that at the higher values of cracking index, the values of the roughness index often tended to give results relatively lower than the observed values. Therefore, the term  $[log (1 + CP)]^3$  was also retained in the equation to help in predicting values closer to the actual values. Finally, Eq 10.15, which corresponds to step 8 in the regression program (Table 10.2), is adopted for the present analysis.

Arctan log 
$$(1 + \sqrt{SV_i} - \sqrt{SV_o}) = -0.09136 + 0.09108 \log (1 + CP)$$
  
+ 0.02445  $[\log (1 + CP)]^2 + 0.00778 [\log (1 + CP)]^3$   
+ 0.00837D<sub>1</sub> + 0.00458D<sub>2</sub> + 0.00175D<sub>3</sub> - 0.00386W

This regression correlation, developed on the 95 observed points, has nine coefficients with a correlation coefficient  $R^2$  of 0.9354. For a mean value of 0.37 of the dependent variable, the standard error of the residuals is 0.0674 (coefficient of variation 18 percent), in comparison to the standard deviation in the variability of the SD Profilometer measurement of 0.0644 for assumed  $SV_0$  equal to one (Ref 155). Values of dependent variables in the analysis range from 0.0 to 1.0. The comparison of the predicted values from this model and the measured values from the AASHO Road Test is discussed in Chapter 11.

The AASHO Road Test measure of cracking-patching is theoretically obtained from the cracking index model and is defined as the cracking index, as explained in Chapter 8. Thus, for the performance calculation in the present report, the cracking-patching term in Eq 10.15 is replaced by the cracking index CI.

#### SELECTION OF MODEL

Equation 10.13 is given in terms of only equivalent 18-kip load group and is not suitable for the proposed design procedure which considers all load groups individually. Figure 10.3 compares the actual data points with the predictions made by the equation obtained from Painter's analysis (Eq 10.12) and the regression model (Eq 10.15). Equations derived from literature (Eqs 10.12 and 10.13) are indeterminate at the zero value of CP. The regression model (Eq 10.15) predicts a mean value of log  $(1 + \sqrt{SV} - \sqrt{SV_0})$  as 0.52, while Eq 10.12 predicts 0.514 against the actual mean value of 0.525. The standard error of residuals for regression model (Eq 10.15) is found to be 0.09 against 0.138 for Eq 10.12. Thus, the regression model is seen to predict the points more accurately and is determinate at all values of cracking-patching.

Verification of the roughness index values predicted by the regression model also shows good agreement with observed values, as further discussed in Chapter 11. Moreover, the equations (Eq 10.12 and 10.13) developed from Painter's analysis are obtained by an indirect relationship (Eqs 10.10 and 10.11) and may not be considered accurate.

The proposed regression model is generalized for various load groups and number of axles, and the correlation between cracking-patching and roughness index is derived directly from AASHO Road Test data. Thus, for the analysis presented here, the regression model represented by Eq 10.15 was adopted.

## PROCEDURE FOR COMPUTATION OF ROUGHNESS INDEX

The procedure for calculating the roughness index for any pavement section is:

- (1) Calculate the cracking index values as detailed in Chapter 8.
- (2) Based on engineering experience, assume certain values for the initial slope variance (SV) expected in a planned pavement. Initial values of slope variance, depending on the type of construction, generally vary from 1.0 to 3.0.
- (3) Using the known values of pavement layer thickness, axle load, number of axles, and computed cracking index obtain the slope variance with Eq 10.15.
- (4) Substitute the value of slope variance into Eq 10.5 to obtain the roughness index.

## COMPUTER PROGRAM

The model selected for the roughness index contains several terms, and making the necessary calculations by hand is very time consuming. Moreover,



Fig 10.3. Comparison of log  $(1 + \sqrt{SV_i} - \sqrt{SV_o})$  for various values of log (1 + CP) computed from the model of painters analysis with that predicted from the proposed model.

the whole procedure of pavement design developed here is to be included in an existing flexible pavement systems computer program. A computer program for the calculation of the cracking index and rut depth index has been developed, as explained in Chapters 8 and 9. A computer program for calculation of the roughness index has also been developed and is included in Appendix 4. This computer program, for the roughness index also calculates the present service-ability index. The input consists of the cracking index, rut depth index, pavement layer thicknesses, axle load, number of axles, and initial slope variance. A typical output is included in Appendix 4.

# CHAPTER 11. VERIFICATION OF DISTRESS MODELS

The purpose of this chapter is to verify the distress index models which were developed in Chapters 7 through 10. This chapter is divided into four parts, each of which provides details of verification of one of the models developed for cracking index, slope variance, rut depth, and PSI with the AASHO Road Test data. The AASHO Road Test sections which are compared are shown in Fig 11.1. These 28 sections were selected based on the following criteria:

- (1) to represent various load groups;
- (2) to represent various loops;
- (3) to represent various combinations of layer thicknesses;
- (4) to represent some sections without base and some without subbase;
- (5) considering the reasonable time to be spent, scope of the project, computer time involved in solving problems, and money involved consistent with the accuracy desired and obtained.

All 28 sections were carried over for all distress models. Overdesigned sections such as 763 were avoided in this selection because these were not of much value for comparison. Sections of loop 1 were not considered because this loop did not carry any load.

# CRACKING INDEX MODEL

The detailed development of this model was discussed in Chapter 8. Figure 11.2 compares the calculated cracking index and actual measured values of cracking-patching of six AASHO Road Test sections. This comparison for the other 22 sections is included in Appendix 8 (Figs A8.1 through A8.18).

## Computation of Cracking Index

In computing the cracking index values, the material properties characterized in Chapter 5 are used. Tables 5.2, 5.3, and 5.8 show the adopted monthly values of elastic modulus. The actual monthly traffic data of AASHO Road Test (Ref 70) and the computer program procedure detailed in Chapter 8

| Loop 1 Loop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | Loop 3 Loop 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Loop 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Loop 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Axle Load                                                                                                 | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Axle Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lane I Lane 2<br>None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lane I Lane 2<br>2,000-5 6,000-5                                                                          | Lane I Lane 2<br>12,000-S 24,000-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lane I Lane 2<br>18,000-S 32,000-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane I Lane 2<br>22,400-S 40,000-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane I Lane 2<br>30,000-5 48,000-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Main Factoríal Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main Factorial Design<br>Design 1                                                                         | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main Factorial Design<br>Design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| States States Section Na.<br>States States Section Na.<br>States States Section Na.<br>States States Section Na.<br>States States States Section Na.<br>States States States Section Na.<br>States States States States Section Na.<br>States States St | Si Si Si Si Test Section No.<br>Si Si Si Si Test Section No.<br>Li Si | Test Section No.<br>Sector Sector Section No.<br>Sector Sector Sector Sector No.<br>Sector Sector Sector Sector Sector No.<br>Sector Sector Sec | s s s s s s s s s s s s s s s s s s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Se se se lo contration No.<br>Se se se lo contration No.<br>Se se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 8 867 868<br>0 8 867 868<br>16 833 834<br>0 827 828<br>6 8 847 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 4 \\ 8 \\ 2 \\ 607 \\ 608 \\ 12 \\ 3 \\ 571 \\ 572 \\ 3 \\ 569 \\ 572 \\ 4 \\ 2 \\ 599 \\ 600 \\ 3 \\ 3 \\ 8 \\ 3 \\ 573 \\ 574 \\ 574 \\ 600 \\ 600 \\ 757 \\ 608 \\ 570 \\ 600 \\ 757 \\ 608 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 \\ 757 $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16         839         840           0         859         860           0         859         864           0         863         864           0         863         870           863         870         870           863         864         870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | B         i         ••59         •i60           0         2         127         128           6         4         1         157         158           8         3         11         112           0         2         137         138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12         1         617         618           4         3         585         586           6         8         1         ●623         624           12         2         603         602         602           4         3         583         584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12         1         487         488           4         3         413         414           9         1         471         472           12         2         441         442           4         3         411         412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16         3         253         254           8         1         321         322           9         12         3         267         268           16         2         309         310         320           8         1         319         320         320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3 16 837 838<br>0 825 826<br>6 8 875 876<br>8 819 820<br>0 921 852<br>8 819 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 3 8 2 589 590<br>4 3 8 2 589 590<br>12 3 575 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4         2         595         596           6         8         3         577         578           12         1         9625         626           4         2         605         606           0         8         3         587         586           2         1         621         622         625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16         879         880           973         974         974           Subsurface         Studies         0           Design         5         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface Treatment Study<br>Design 6                                                                       | $4 \begin{bmatrix} 0 & 1 & 153 & 154 \\ 0 & 2 & 145 & 146 \\ 3 & 4 & 1 & 151 & 152 \\ 0 & 1 & 151 & 152 \\ 0 & 1 & 161 & 162 \\ 0 & 1 & 161 & 162 \\ 0 & 1 & 161 & 162 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $5 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5 \begin{array}{r} \begin{array}{r} & 1 \\ 4 \\ 3 \\ 6 \\ 8 \\ 1 \\ 12 \\ 2 \\ 445 \\ 4 \\ 1 \\ 9 \\ 4 \\ 1 \\ 9 \\ 8 \\ 2 \\ 475 \\ 476 \\ 4 \\ 1 \\ 9 \\ 475 \\ 476 \\ 483 \\ 484 \\ 483 \\ 484 \\ 483 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484 \\ 484$ | $6 \begin{array}{c} 6 \\ 6 \\ \hline 6 \\ \hline 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | 6 4 3 123 124<br>8 2 139 140<br>Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 3 581 582<br>Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 3 427 428<br>Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shoulder Paving Study<br>Design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>0<br>8<br>8<br>853<br>854<br>16<br>817<br>818<br>0<br>855<br>856<br>8<br>845<br>846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} & & & & & & & & & \\ \hline & & & & & & \\ & & & &$                                     | Service State Section No. Sect         | se visit de la construction No.<br>se visit de la construction No.                                                                                                                                                                                                                                            | And the second s                                                                                                                                                                                                                                                                                                                                                                                 | Lane Lane Lane Lane Lane Lane Lane Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 0 735 736<br>4 761 762<br>713 714                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shaded section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns are replicates.                                                                                        | Base Type Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Base Type Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bose Type, Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Base Type Study<br>Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| comparison for<br>models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns are used for<br>r the proposed<br>es shown are in                                                      | Crush 3 2-14 0 169 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a al bis statest Section No.<br>a al bis statest Section No.<br>bis st                                                                                                                                                                                                    | 8 8 8 8 7 Test Section No.<br>8 8 8 8 7 Test Section No.<br>8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e |
| inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stone         3         2         10         7         561         562           Gravet         3         2-16         4         565         566           Cem         3         2-10         4         563         564           Treot         3         2-10         4         563         564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bit         3         3-16         4         457         450           Treat         3         3-16         4         463         464           Cem.         3         3-12         4         465         466           Treat         3         3-12         4         461         462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stone         3         0         279         280           Bit.         4         3-18         4         285         286           Treat.         4         3-13         4         289         290           Treat.         4         3-13         4         283         284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

. .

Fig 11.1. AASHO Road Test sections used for comparison of distress index and performance model (After Ref 70).

116

٠.

.



Fig 11.2. Computed cracking index (CI) versus observed cracking-patching (C + P).

\*

to calculate the cracking index are used in these computations. Typical computer computations are shown in Appendix 4. The observed field values of cracking-patching are from the AASHO Road Test performance record for each test section (Ref 70). Typical performance records for a few sections are included in Appendix 5. The observed and computed values thus obtained are plotted and compared. For 2-kip axle loads (Figs A8.1 through A8.3) on loop 2 of the AASHO Road Test sections, the results based on the above mentioned material properties were quite conservative, for the following reasons:

- (1) Small loads and low tire pressures resulted in a lower effective tire radius, which, for the same speed, gives a loading time that is about 50 percent of the average for all axle loads. The lower loading time can give asphalt concrete stiffness values for 2-kip axle loads that are up to 25 percent more than the stiffness values for higher loads. Moreover, a lower time of loading will increase the fatigue life of the pavement.
- (2) The test results for the AASHO Road Test sections indicate that the outer wheel path generally showed more distress than the inner wheel path, but for lane 1 of loop 2 in many cases, and especially the sections under consideration, the inner wheel path showed more distress than the outer wheel path.
- (3) Report 5 of the AASHO Road Test (Ref 70) shows that lane 1 of loop 2 always behaved differently from other loops; in most cases, when other lanes showed good correlation with certain parameters, lane 1 was dropped from consideration. In some cases the correlations were based on a minimum asphalt concrete thickness of 2 inches, which excluded quite a few sections of loop 2 (Ref 70, pp 37, 38, 40, 41, 42, 43. 60, and 66).

In view of the above, the cracking index values for 2-kip axle loads in loop 2 were recomputed with revised stiffness modulus and fatigue characteristics for asphalt concrete. The cracking index values thus calculated are plotted in Figs A8.1 through A8.3.

## Comparison of Computed and Field Cracking Distress

A study of the comparison of observed and computed cracking index shows that most of the plots agree well, but in a few cases the calculated values are different than the observed values.

The reasons are not known, but even the replicate sections in the AASHO Road Test did not show the same cracking-patching history. Therefore, it can be expected that observed values of cracking-patching will deviate from any calculated with a theoretical model. A model that resulted in residual errors that averaged about the same as the deviations of the replicate observations would be satisfactory. These replicate sections showed differences of up to 450 square feet per 1000 square feet in the cracking-patching measurements for the same month. Furthermore, for Sections 307 and 305 (Fig A8.16), there was a year's difference in failure, i.e., Section 305 had a failure pattern similar to that for 307, but it was one year sooner.

In comparing results, consideration must be given to the overall trends and quality of the plots, as specific points may differ for various reasons at different times.

Based on this criteria for expected variation and engineering judgment, for comparison and explanation, the plots of observed and computed cracking index (Figs 11.2 and A8.1 through A8.18) were divided into three categories as follows:

- (1) Good fit. Calculated and observed plots match very closely. The plots have similar shapes and differences at any one point are seldom reach more than 300 square feet.
- (2) Medium fit. Calculated and observed plots do not fit well, but the differences can be explained and do not affect the predicted pavement performance significantly. The difference, however, in a few cases may reach 450 square feet or more. This difference of 450 square feet in a particular month is equivalent to a difference of 0.21 in PSI which is not of much significance.
- (3) Poor fit. Calculated and observed plots have considerable differences. Some of them may be explained; some are due to random variations.

The number of sections in each category is

- (1) Good fit 20
- (2) Medium fit 5
- (3) Poor fit 3

Thus, plots for more than 70 percent of the sections under study fit well. Results were good for all the sections in the 12-kip loop 3 group. In addition, other explanations given below show that the cracking index model gives very good results. For extreme conditions of loading and thickness, some deviation can be expected, but this is a normal statistical characteristic and is acceptable.

## Discussion of Comparison

The comparison of observed and calculated values of cracking index and the above discussion shows that general discrepancies observed in the results for loop 2 may be resolved by proper material characterization. The following discussion for all loops explains some apparent differences that are due to time phase and measurement discrepancies; some other differences can also be explained and discrepancies resolved as discussed hereafter. Only a few sections actually have notable differences between actual and predicted values.

- (1) If for some reason a failure in the field did not occur one spring season, the whole cycle is likely to be shifted in the actual pavement sections in the field (Fig A8.16). In this case, the shape of the distress envelopes is the same, but the time phase difference will be apparent. Since the theoretical model does not consider this contingency, differences between field and computed values can arise in several cases. Figures A8.4, A8.11, A8.16, and A8.17 are examples of this situation. At first glance it may appear that the observed and calculated values are very different but a careful study shows that if the time phase shift may be considered, the values are in close agreement. Therefore, the sections put in the categories of poor or medium fit in fact had good fit, and confidence in the developed model is improved.
- (2) In several cases not enough points are available to show the actual trend (Figs A8.10, A8.13, and A8.14).
- (3) Monthly average variations in the modulus values were considered, in accordance with the procedure developed, but shorter periods might give closer results.
- (4) Material characterization is a very important factor. Any discrepancy in the characterization of material properties can cause differences in the results. In this study the materials were characterized on an average basis not for specific sections.
- (5) During hot months the rate of crack propagation is slow; the asphaltic concrete becomes softer and the cracks become temporarily invisible. Therefore, during these months inaccuracy in the measurements of observed data could occur and more discrepancy is likely to show up between calculated and observed values. In Section 305 (Fig A8.16) observed values decreased instead of increasing, which was not as expected. Moreover, during hot months, due to lower stiffness values, higher strains are expected; these may appear in the extreme end of the fatigue curve and show more distress, according to the design criteria, than actually happened and was observed. The sections in these periods may tend to behave under constant strain rather than constant stress conditions (assumed), making the calculated values more conservative. These facts are apparent from many sections (Figs A8.4, A8.11, A8.15, A8.16, and A8.17).
- (6) The daily temperature cycling and other environmental effects when taken into account will also tend to give more realistic and better trends in all cases.
- (7) Once the surface has distressed to some extent, impact and regenerated or progressive added distress effects may also influence the pavement condition. This result may be different for different axle loads.

- (8) The slope of the fatigue curve may vary slightly for different axle load groups and temperature conditions, since the response of asphaltic concrete may be affected to some extent by time of loading and temperature. In this study average characteristics are assumed. Thus, the results for load groups other than 12 kips show comparatively more variation.
- (9) From the discussion in Chapter 4, it appears that in thinner sections controlled-strain is more suitable. Therefore, for thinner sections the constant stress assumption is likely to give conservative results (Figs A8.1 through A8.4).
- (10) Some of the unexplainable differences may be due to random statistical behavior of the test sections, especially extremely thin sections with small loads, for which extreme values of strain may show even more variation in fatigue curve and in which statistically more variation is expected.

The following comments from NCHRP Report 35 (Ref 164) support the use of the procedure explained herein.

"It has been shown that tensile strains of a magnitude sufficient to initiate fatigue cracks occur on the road surface and theoretical considerations of a layered system indicate that even greater tensile strains occur on the under side of the top layers. These tensile strains will be a maximum when the overall stiffness of the entire structure is a minimum. The stiffness of bituminous materials is dependent on temperature and the critical condition is therefore likely to arise at high temperatures during the summer months.

However, the fatigue tests at high temperatures show that although cracks initiate under these conditions, they propagate only slowly due to the lower stress, and thus failure will not necessarily be apparent at this time. But once the temperature falls and the stiffness of the bituminous layers increases, there will be an increase in the stress, particularly at the tip of the crack, owing to stress concentration effect. This will result in more rapid propagation of any fatigue cracks under winter conditions, but again it will not necessarily lead to failure owing to the freezing of the subbase and subgrade and the resultant increase in strength. During the thaw period, however, the fact that the surface layers are cracked increases greatly the likelihood of pavement deterioration from penetration of water and consequent local subgrade failure."

## Summary

From the above discussion, it can be concluded that the difference in calculated and observed values, even in the cases of poor and medium fit plots, can reasonably be explained in all but one or two cases (Fig A8.14), which could not be explained because not enough data points are available. The model developed seems to give acceptable results, is based on a rational recognized approach, and can be used for design of flexible pavements. Any improvements, as discussed above, in the model will further reduce the gaps between observed and calculated results.

## RUT DEPTH INDEX MODEL

The details and development of the rut depth index model were discussed in Chapter 9. For the comparison of rut depth index values, the sections used for the cracking index model are considered here. Figure 11.3 shows a comparison of the calculated rut depth index and observed values of six selected AASHO Road Test sections. Other test sections so compared are included in Appendix 8 (Figs A8.19 through A8.36).

## Computation of Rut Depth Index

In computing the rut depth index values also the material properties were characterized as in Chapter 5. The monthly values of elastic modulus contained in Tables 5.2, 5.3, and 5.8 are used. Equations 5.1, 5.2, and 5.4 are used for repeated load-deformation characteristics of materials. The actual monthly traffic data of the AASHO Road Test (Ref 70) are used. Typical computer computations are included in Appendix 4. The rut depth index computer program, discussed in Chapter 9, computes the total deformation as well as the deformations of the base, subbase, and subgrade layers. When the total calculated deformation was compared with the observed values of the AASHO Road Test sections, it was noted that the calculated values were generally higher initially but were approximately equal at the time of failure. In this regard, a study of the AASHO Road Test (Ref 70) showed that

- (1) Rate of rut development decreased with load applications.
- (2) Although pronounced rutting developed in both wheel paths of the pavement surface, very little was apparent in the embankment soil where the sections were maintained. This and other thickness and trend measurements of the AASHO Road Test sections were considered to be evidence that pavement layers were mainly responsible for rutting observed in the wheel paths of the pavement surface and that the subgrade makes almost no contribution toward rut depth.
- (3) If the sections that were failing at a rapid rate were not maintained rutting or distortion of the pavement in the wheel paths extended into the embankment soil.

Based on the above observations, plots of observed and computed rut depth were made (Figs 11.3 and A8.19 through A8.36) without considering the effect of subgrade deformation unless the condition in item 3 above was encountered. Legend Calculated <del>× × ×</del>

1



Fig 11.3. Observed versus calculated rut depth index.

123

In the present design procedure, the computer program computes the deformation in all the pavement layers separately. Therefore, the observation made in item 2 can be accounted for in the procedure easily.

## Comparison of Computed and Field Rut Depth

Figures 11.3 and A8.19 through A8.36 show that there was close agreement between the observed and calculated values. Of 28 sections which were compared, about 23 showed a difference between the calculated and observed values of less than 0.2 inch and none of the sections has a difference of more than 0.3 inch.

Not even the replicate sections in the AASHO Road Test showed the same performance and rut depths; therefore, it can be expected that observed rut depths data will deviate from values of rut depths calculated from any theoretical model. A satisfactory model should give residual errors that average about the same as the deviations of replicate observations from their own mean. The rut depth differences in the observed values of the replicate sections have been noted as high as 0.3 or even more.

## Discussion of Comparison

When observed and calculated values of rut depth are compared, the following points must be considered:

- (1) For calculations of rut depth, not all the local climatic and other factors could be or were considered in detail; for example, certain rainfalls and snowfalls of short duration, non-load associated effect, and temperature stresses. Therefore, some differences are bound to occur. Comparison should be made of the general trend of the plots and their qualitative rather than exact quantitative agreements for each month. In some cases the observed values of rut depth decreased with increases in traffic load repetitions, instead of increasing. This is not correct and may be due to observation errors. In many cases corrections close the gap in observed and calculated values.
- (2) Quantitative differences between observed and calculated values may be considered in the light of the effect on the PSI values of the sections. In the PSI and PSR observations of the AASHO Road Test data (Ref 70), a difference as large as 1.1 was observed and the mean value of the difference for 74 observations, on which PSI equation was based, was 0.3. The contribution of the rut depth in the PSI equation is  $1.38 \text{ RD}^2$  (Ref 70). Assuming that all the error in PSI is due to rut depth and that a correct average rut depth is about 0.25 inch, the reasonable acceptable value of the difference between computed and observed values of rut depth can be computed. It is seen that for a mean correct rut depth of 0.25 inch even a

value of rut depth between 0.0 and 0.53 and similarly at a mean value of 0.6 inch rut depth, values from 0.38 to 0.76 will be within the acceptable difference of 0.3 in the PSI values.

- (3) At the AASHO Road Test a high level of correlation was found between deflections and performance. Performance is affected by degree of rutting. Thus, deflections were correlated with rutting (Ref 70, Fig 95). Dotted lines on the plots of deflection vs rut depth in Fig 95 in Ref 70 were located one standard error of the estimate from the regression line. For a creep speed deflection of 0.04 inch, for example, the corresponding values of rut depth for one standard deviation vary from 0.35 to 0.65. A model predicting a variation to this extent was acceptable for AASHO Road Test data. Therefore, any model of this accuracy should ordinarily be satisfactory.
- (4) In the replicate sections (Ref 70, Appendix C) of the AASHO Road Test reports, the spring creep deflection data show a variation from 0.038 inch to 0.072 inch for loop 3, lane 2. The corresponding rut depths from Fig 95 of Ref 70 are

| <u>Axle Applications</u> | <u>Rut Depth in Inches</u> |
|--------------------------|----------------------------|
| 140,000                  | 0.2 - 0.7                  |
| 610,000                  | 0.35 - 0.8                 |
| 1,114,000                | 0.45 - 1.0                 |

Deflections for 18-kip axle loads in loop 4, lane 1, for replicate sections measured 0.077 inch and 0.056 inch. The corresponding rut depths at 140,000 applications are 0.8 inch and 0.47 inch. These data show that in the replicate sections of the AASHO Road Test data the above order of variation in the rut depth can be expected and any model predicting with this accuracy should be satisfactory.

- (5) For a few sections the difference between observed and calculated rut depth was relatively more in the beginning of the performance period and then evened out. This is not considered significant for the following reasons:
  - (a) A discrepancy in rut depth in the beginning affects the present serviceability much less. For example, a discrepancy of 0.2 inch between values of 0.1 and 0.3 will affect the PSI only by 0.1, while toward the end the same difference between rut depth values of 0.5 and 0.7 affect the PSI by 0.33.
  - (b) The computed values are in most cases conservative.
  - (c) From the design point of view, relatively more correct values for the level of service are required at some time other than the beginning, for example, at the time of overlay, and maintenance, when correct values of PSI are more important for decision criteria.
  - (d) In the beginning, when the ruts are not visibly well defined, measurement error in the observed values is likely to be relatively higher.

#### Summary

It is seen from the plots that in almost all cases the differences are much less than the expected minimum accuracy discussed above, and in most cases the predicted or calculated values are very close to the mean observed values for outer and inner wheel paths. From the above discussions, it can be concluded that rut depth prediction by the model and the method presented in this report are dependable and can be used in the design of the flexible pavements.

## VERIFICATION OF ROUGHNESS INDEX MODEL

To estimate the value of slope variance, a roughness index model was developed (Chapter 10). This model predicted the roughness index values corresponding to the cracking index. In this section the computed values of roughness index are compared with the observed values of the selected 28 AASHO Road Test sections. These sections are the same as those selected for the cracking index and rut depth index models (Fig 11.1).

## Computation of Roughness Index

Cracking index values are theoretically calculated equivalent values and represent the cracking-patching in the pavement. Therefore, from the cracking index values calculated from the cracking index model as discussed in the first section of this chapter for various AASHO Road Test sections, corresponding values of roughness index (RI) were calculated by the computer program (Appendix A4.4), as discussed in Chapter 10. In these calculations the regrestion analysis model (Eq 10.15) developed earlier in Chapter 10 is used.

## Comparison of Computed and Field Roughness Index

Figure 11.4 shows a comparison with six selected AASHO Road Test sections. This comparison with the other 22 sections is shown in Figs A8.37 to A8.58. The computations were made for 28 AASHO Road Test sections. Careful scrutiny and engineering judgment will show that about 16 sections show very good predictions, six may be termed as showing medium fit, and six show comparatively poor results. However, it must be remembered that the calculated roughness index values were obtained from the calculated cracking index values. Any discrepancy in the observed cracking-patching and calculated cracking index, therefore, will also show up here. Such observed differences were explained



× .

Fig 11.4. Calculated and observed roughness index, RI.

earlier, and it was noted that most discrepancies could be explained, and thus the calculated cracking index values were reliable and satisfactory. Once the cracking index value discrepancy is explained, the estimated roughness index value will also give satisfactory results, and the apparent differences noted above in the calculated and observed roughness index values will be reduced.

For plots with good fit, the differences are very small, with the greatest difference being 0.2. In the medium fit category the difference was occasionally as large as 0.4. For poor fit plots, the differences in calculated and observed roughness index values were sometimes as much as 0.6 to 0.7, although most differences were much less. However, with the explanation already offered for the cracking index these differences will be reduced. Moreover, even in these sections (poor fit), values at the beginning and end of the performance period compare very well, but observed values of roughness index either decreased or stayed the same at some other time resulting in apparent high differences in values during the performance period. The constant or decreased observed values of roughness index during the performance period are considered wrong for theory and/or logic. Proper corrections in the observed data will reduce the differences.

The replicate sections in the AASHO Road Test did not show the same performance and slope variance measurements, and it can be expected that observed performance data will deviate from calculated values from any theoretical model. For the AASHO Road Test sections, replicate differences in roughness index values as much as 0.40 and in some cases 0.7 were observed. These replicate differences in roughness index are equivalent to replicate differences of 0.76 and 1.33, respectively, in PSI. Moreover, even the standard deviation of the variability of the SD Profilometer measurements for roughness index has been observed as 0.37 (Ref 155). The final effect of any discrepancy of roughness index should be compared in terms of present serviceability index, and this is done in the last section of this chapter.

Figures 11.5 through 11.9 show the comparison of calculated and observed roughness index values for some additional AASHO Road Test sections. For these sections, values of roughness index were calculated, from the actual observed values of cracking-patching as well as from the computed cracking index. The calculated and observed values in both cases are found in close agreement for these sections also.



.

. .

.

٠

.

Fig 11.5. Verification of roughness index model.

۰.

:



۰.

۲

Verification of roughness index model.

130

ŝ,

Legend:
#### Summary

Generally the differences between calculated and observed values are within acceptable limits and the model presented herein gives satisfactory results and can be relied on in the design of flexible pavements.

### VERIFICATION OF THE PERFORMANCE MODEL

The models for quantification of the cracking index (CI), rut depth (RD), and roughness index (RI) were developed in Chapters 8, 9, and 10, respectively. Verification of these models earlier in this chapter proved their applicability to the design procedure for flexible pavements. For comparison of the observed and calculated values of PSI, 28 sections selected for distress index models comparison are also utilized here.

### Computation of PSI

For selected AASHO Road Test sections, the values of CI, RI, and RD were computed from the models developed in this report. Then PSI values for these sections were calculated from Eq 7.1. The computer program to calculate the cracking index and rut depth index values is given in Appendix A4.2. Another computer program, which calculates the roughness index and present serviceability index, is included in Appendix A4.4.

### Comparison of the Performance Model

The calculated and observed values of present serviceability index for AASHO Road Test sections are compared as shown in Figs 11.10 and A8.59 through A8.80. In these figures, it can be observed that

- (1) In general, the calculated and predicted values of PSI at the beginning are very close in almost all cases, as are those at the end.
- (2) Fluctuations and some differences in calculated and observed values occur at times other than close to the beginning and end.
- (3) The calculated values always show a decreasing trend, but in some cases the observed values of PSI increase with time for some periods, which is wrong theoretically as well as conceptually. Other than this discrepancy, the trend of loss in serviceability is computed and observed values is the same.
- (4) Of 28 plots, 17 show a maximum difference in any month in calculated and observed values of PSI on the order of 0.3. This difference is about 0.7 in five cases while it is as much as 1.5 in six cases. The mean difference, however, is only 0.15.



. .

.

Fig 11.10. Observed versus calculated present serviceability index, psi.

For a comparison of calculated and observed values the following points should be considered:

- (1) At the AASHO Road Test (Ref 70), where the original PSI equation was derived, based on the present serviceability ratings of 74 data points, the difference between PSR and PSI was as large as 1.1, with a mean value of 0.3. Therefore, it seems that any difference between calculated and observed values of  $\pm$  0.3 is not significant, and in some cases a difference as high as 1.1 can be tolerated.
- (2) In the theoretical calculations, not all the local and temporary conditions affecting the PSI can be taken into account, for example, a brief local rainfall or snowfall. Therefore, large fluctuations at times other than at the beginning and end of the performance period are likely to occur.
- (3) The effects of embankment swelling, nonload-associated effects, and temperature stresses were not taken into account. When these effects are included, closer predictions are expected. The work to quantify these effects is already in progress and is the subject of another report.
- (4) The increase in PSI at any time in the performance period cannot be explained theoretically or logically. In observed measurements it increased very often, which may be due to errors in the measurements or, sometimes, to local and short smooth surfaces. When this discrepancy in the observation is removed, better agreement between the calculated and observed values will result.
- (5) During certain times of the year, especially hot months, measurements of cracking are likely to be wrong (Ref 70) because of temporary invisibility of the cracks. This may lead to lower and false observed values of the PSI. During some periods the measured values of roughness index also decreased instead of increasing with load repetitions. Some of the large differences in observed and calculated values of PSI are in fact due to these discrepancies in observed values (Figs A8.63, A8.69, A8.70, A8.72, A8.74, A8.75, A8.78, and A8.79) and the observed values, instead of going down as expected, either went up or stayed the same, causing bigger differences. Correction of this situation will improve the agreement between observed and calculated values.
- (6) The general trend of the performance curve and the values of PSI calculated and observed at the beginning and end are very close in most cases.
- (7) Differences in some cases occurred in the field because of the time phase difference phenomenon, which was explained for the cracking index. Sections showing large differences in PSI are the same as those which showed large differences in cracking index.
- (8) The replicate sections in the AASHO Road Test did not show the same performance (Figs 11.10, A8.63, A8.64, A8.69, A8.72, A8.74, A8.75, A8.77, and A8.78). Therefore, it can be expected that the observed performance data will deviate from the calculated performance values obtained from any theoretical model. However, a model may be

considered satisfactory which results in residual errors that average about the same as the deviations of the replicate observations from their mean. The same type of criteria were adopted in the AASHO Road Test for choosing a satisfactory model (Ref 70, p 43).

The performance model developed in the AASHO Road Test gave a mean prediction error in the performance value of PSI for various loops of 0.39 to 0.75, with an overall mean of 0.53 (Ref 70, Table 11). There is no mention of the extent of the maximum errors of predictions involved in the model. However, when the mean error in a loop is 0.75, the maximum prediction error can be more than 1.0 and up to 1.5.

For the AASHO Road Test, a mean replicate observed difference in PSI was reported as 0.46 (Ref 70, p 43). From the observation of various replicate sections in this report, the PSI values were different by even more than 1.0 at various times. This difference was 2.0 or greater at or close to the time of failure in some test sections.

The replication difference given by the panel in the PSR ranged as high as 0.5 (Ref 70, Table 1.F, pp 295 and 306). It was noted that this replicate difference was observed when ratings were made on successive days and it is possible that replicate PSR's would differ even more over a longer interval of time. The standard deviation of the individual PSR value for each section is 0.5, which shows that 3 ratings out of 10 will be even more than 0.5 rating points from the panel mean PSR.

- (9) In the spring of 1971 a team of graduate students from the Center for Highway Research at The University of Texas at Austin was sent out to measure the performance data of some of the highways in Texas. They were also instructed to assign the rating values to these highways in accordance with the AASHO Road Test procedure. A difference between the ratings of the students as high as 1.1 was noted, and the difference in PSI and PSR was as high as 1.6. A difference in PSI and PSR up to 1.0 was very common.
- (10) Figure 11.11 shows the calculated monthly values of the present serviceability index (PSI) against the observed values for all test sections shown in Fig 11.1. The overall mean values of observed and predicted PSI values are 3.28 and 3.13, respectively. The difference in mean values is only 0.15, as compared to 0.3 mean difference between PSR and PSI (paragraph (1) above) and a mean observed replicate difference of 0.46 (paragraph (8) above). Less than 10 percent of the points fall outside the  $\pm 0.75$  lines (paragraph (8) above). The correlation coefficient between the predicted and observed values is 0.872 and the mean absolute residual is 0.43.

### Summary

Based on the discussions in the previous section of this chapter and the results using the models developed in this report, it may be concluded that the predictions are well within the expected accuracy and discussed criteria.



Fig 11.11. Comparison of observed and computed present serviceability index (psi) of various test sections.

Any major differences can be explained in all cases. Therefore, these models should be considered satisfactory for use in the design of the flexible pavements.

.

PART IV

••

..

VERIFICATION AND PROPOSED USE OF MODELS

### CHAPTER 12. SENSITIVITY ANALYSIS

Verification of the developed models in Chapter 11, and predictions which compare well with observed data give confidence in the use of the proposed models. In this chapter, results of a sensitivity analysis for the cracking index model are reported. The purposes of the sensitivity analysis are to

- (1) establish confidence and reliability in the models,
- (2) improve the understanding of the models,
- (3) debug the computer program,
- (4) establish the relative significance of the input variables,
- (5) simplify the computer program by eliminating or fixing variables, and
- (6) establish guidelines and precautions for the use of the models.

It is recognized that a designer has only limited time and resources to spend in estimating the large number of inputs needed in the proposed procedure. Therefore, the more important inputs in determining the optimum cost and design should be estimated with greater precision and accuracy than the others. The conclusions in this chapter are based on broad general observation and do not hold in all cases. One effective method of determining the relative significance of the parameters in a complex model is to perform a sensitivity analysis by evaluating the amount of response in a model due to a unit change in the parameters. The interactions of the variables must be studied for a complete sensitivity analysis.

### Description of Analysis

About 35 main parameters are involved in the present fatigue models developed in the report. Complete sensitivity analysis is a major task and is not considered herein, but it is recommended that it be made at the earliest opportunity. The most important and significant mathematical model developed in the present study is the cracking index model. Therefore, a

limited sensitivity analysis was made to study the effect of different parameters on cracking index values and verify the suitability of the model.

Results of detailed sensitivity analyses on FPS models reported in Refs 89, 92, and 93 provide background for such a study.

A complete sensitivity study would require an analysis of designs and costs at all levels of the possible ranges of the variables involved. Such an analysis of variance would have to be performed on a very large scale to cover the effects of individual variations of the variables as well as their variations in groups. To study all the possible interactions of variables, an experiment would have to be set up to solve the number of problems given by the full factorial of 35 variables. Such a large scale experiment is not feasible from either a solution time or a data analysis point of view.

Therefore, an experiment had to be formulated which could be done within reasonable time and with a reasonable amount of effort and would give the maximum information desired to effectively use the developed computer program and to attain the required confidence for using the proposed models for actual field problems. A five-level experiment (Fig 12.1), as discussed in Ref 93, is desirable for a sensitivity study of a model having a large number of variables, the type proposed in this report. However, for the sensitivity study of small magnitude reported herein, a three-level experiment (Fig 12.2) was selected. This experiment would isolate the effects of individual variables by varying one variable while the rest are held constant. The experiment was designed by giving each variable, based on engineering judgments, its low, average, and high magnitude value, as shown in Table 12.1. For example, in the present study the low and high values of the elastic modulus of different materials are varied by 25 percent, i.e., about one standard deviation, either way to study the effect of the variation. These elastic modulus values do not represent the real low and high values of this parameter. A detailed sensitivity study should consider the actual variation from low low values to high high values expected in real situations for all the parameters. One basic solution was then obtained keeping all the variables at the average level. The variations were then studied in the average cut, and two more problems were studied for every variable. These problems involved all the variables at their average levels except that the one under study was given its low and high value for the two problems. In a detailed three-level experiment similar studies should be made for the low



Where

~

LL = low low values L = low values Av = average values H = high values HH = high high values

Number of Problem Solutions N is given by

 $N = C + V \times C (S - 1)$ 

where

C = number of cuts
V = number of variables
S = number of study levels

Fig 12.1. Typical five - level experiment for sensitivity analysis.



Where

L = low value

Av = average value

H = high value

Number of problem solutions N is given by

 $N = C + V \times C (S - 1)$ 

where

V = number of variables

S = number of study levels

C = number of cuts

Note: In the present study the variables were studied at the average cut only (C = 1), for which the number of solutions are:

 $1 + V \times 1 \times 2 = 2V + 1$ 

|       |                                                            | ·                     | <b>Val</b> ue                      |                                   |
|-------|------------------------------------------------------------|-----------------------|------------------------------------|-----------------------------------|
| SR/NO | Variable                                                   | Low                   | Average                            | High                              |
| 1     | Single Axle Load<br>(Kip)                                  | 7                     | 12                                 | 17                                |
| 2     | Tire Pressure<br>(1bs/in <sup>2</sup> )                    | 42.3                  | 65.7                               | 67.5                              |
| 3     | Thickness<br>(inches)                                      |                       |                                    |                                   |
|       | (a) A. Concrete                                            | 3.0                   | 5.0                                | 7.0                               |
|       | (b) Base                                                   | 3.0                   | 6.0                                | 9.0                               |
|       | (c) Subbase                                                | 9.0                   | 12.0                               | 15.0                              |
| 4     | Mean Elastic Modulus<br>E values<br>(lbs/in <sup>2</sup> ) |                       |                                    |                                   |
|       | (a) Concrete                                               |                       |                                    |                                   |
|       | Jan.                                                       | 12.00×10 <sup>5</sup> | $16.00 \times 10^{5}$              | 20.00×10 <sup>5</sup>             |
|       | Feb.                                                       | $10.60 \times 10^{5}$ | 14.20×10 <sup>5</sup>              | 17.60×10 <sup>5</sup>             |
|       | Mar.                                                       | $10.28 \times 10^{5}$ | 13.70 <sub>×</sub> 10 <sup>5</sup> | $17.12 \times 10^{5}$             |
|       | Apr.                                                       | 6.75×10 <sup>5</sup>  | 9.00×10 <sup>5</sup>               | $11.25 \times 10^{5}$             |
|       | Мау                                                        | 4.50×10 <sup>5</sup>  | 6.00×10 <sup>5</sup>               | 7.50×10 <sup>5</sup>              |
|       | June                                                       | 3.00×10 <sup>5</sup>  | 4.00×10 <sup>5</sup>               | $5.00 \times 10^{5}$              |
|       | July                                                       | $2.62 \times 10^{5}$  | 3.50×10 <sup>5</sup>               | $4.37 \times 10^{5}$              |
|       | Aug.                                                       | $2.25 \times 10^{5}$  | $3.00 \times 10^{5}$               | $3.70 \times 10^{5}$              |
|       | Sep.                                                       | $3.15 \times 10^{5}$  | $4.20 \times 10^{5}$               | 5.25 <sub>×</sub> 10 <sup>5</sup> |
|       | Oct.                                                       | $4.92 \times 10^{5}$  | $6.50 \times 10^{5}$               | $8.12 \times 10^{5}$              |
|       | Nov.                                                       | 6.27×10 <sup>5</sup>  | 8.30×10 <sup>5</sup>               | $10.37 \times 10^{5}$             |
|       | Dec.                                                       | 9.82×10 <sup>5</sup>  | 13.10×10 <sup>5</sup>              | $16.37 \times 10^{5}$             |
|       | (b) Base                                                   |                       |                                    |                                   |
|       | Jan.                                                       | 18000                 | 24000                              | 30000                             |
|       | Feb.                                                       | 18000                 | 24000                              | 30000                             |
|       | Mar.                                                       | 18000                 | 24000                              | 30000                             |

# TABLE 12.1. ASSIGNED LOW, AVERAGE AND HIGH MAGNITUDE VALUES OF THE PARAMETERS

.-

- .

(Continued)

| TABLE | 12.1. | (Continued) |
|-------|-------|-------------|
|-------|-------|-------------|

.

.-

٠

•

.

- 💊

.

|       |     |          | · · · · | Value          | -<br>- |
|-------|-----|----------|---------|----------------|--------|
| SR/NO |     | Variable | Low     | Average        | High   |
|       |     | Apr.     | 11700   | 15600          | 14500  |
|       |     | May      | 11000   | 18000          | 22500  |
|       |     | June     | 14700   | 196 <b>0</b> 0 | 24500  |
|       |     | July     | 16200   | 21600          | 27000  |
|       |     | Aug.     | 17400   | 23200          | 29000  |
|       |     | Sep.     | 18000   | 24000          | 30000  |
|       |     | Oct.     | 18000   | 24000          | 30000  |
|       |     | Nov.     | 18000   | 24000          | 30000  |
|       |     | Dec.     | 18000   | 24000          | 30000  |
|       | (c) | Subbase  |         |                |        |
|       |     | Jan.     | 9900    | 13200          | 16500  |
|       |     | Feb.     | 9900    | 13200          | 16500  |
|       |     | Mar.     | 9900    | 13200          | 16500  |
|       |     | Apr.     | 5400    | 7200           | 9000   |
|       |     | May      | 6450    | 8600           | 10750  |
|       |     | June     | 7100    | 9800           | 12250  |
|       |     | July     | 8100    | 10800          | 13500  |
|       |     | Aug.     | 8700    | 11 00          | 15500  |
|       |     | Sep.     | 9150    | 12200          | 15250  |
|       |     | Oct.     | 9400    | 12400          | 15600  |
|       |     | Nov.     | 9600    | 12800          | 16000  |
|       |     | Dec.     | 9900    | 13200          | 16500  |
| (     | (d) | Subgrade |         |                |        |
|       |     | Jan.     | 4950    | 6600           | 8250   |
|       |     | Feb.     | 4950    | 6600           | 8250   |
|       |     | Mar.     | 4950    | 6600           | 8250   |
|       |     | Apr.     | 2700    | 3600           | 4500   |
|       |     | Мау      | 3225    | 4300           | 5375   |

(Continued)

| TABLE | 12.1. | (Continued) |
|-------|-------|-------------|
|-------|-------|-------------|

."

.-

.

Ī,

.

-

|       |                             |                                        |      | Value   |      |
|-------|-----------------------------|----------------------------------------|------|---------|------|
| SR/NO |                             | Variable                               | Low  | Average | High |
|       |                             | June                                   | 3675 | 4900    | 6125 |
|       |                             | July                                   | 4050 | 5400    | 6750 |
|       |                             | Aug.                                   | 4350 | 5800    | 7250 |
|       |                             | Sep.                                   | 4575 | 6100    | 7625 |
|       |                             | Oct.                                   | 4650 | 6200    | 7750 |
|       |                             | Nov.                                   | 4800 | 6400    | 8000 |
|       |                             | Dec.                                   | 4950 | 6600    | 8250 |
| 5     | Pois<br>(µ)                 | son's Ratio<br>held constant           |      |         |      |
|       | <b>(</b> a)                 | A. Concrete                            | 0.3  | 0.3     | 0.3  |
|       | (b)                         | Base                                   | 0.4  | 0.4     | 0.4  |
|       | (c)                         | Subbase                                | 0.45 | 0.45    | 0.45 |
|       | (d)                         | Subgrade                               | 0.5  | 0.5     | 0.5  |
| 6     | Conf<br>for                 | idence α<br>E-values (Εχ)              |      |         |      |
|       | (a)                         | A. Concrete                            | .095 | .18     | .265 |
|       | (b)                         | Base                                   | .095 | .18     | .265 |
|       | (c)                         | Subbase                                | .095 | .18     | .265 |
|       | (d)                         | Subgrade                               | .095 | .18     | .265 |
| 7     | Coef<br>"V"<br>v            | ficient of variation<br>of E values    |      |         |      |
|       | $(\mathbf{v}_{\mathbf{v}})$ | $= \frac{\sigma_{E_X100}}{\bar{E}_v} $ |      |         |      |
|       | (a)                         | A. Concrete                            | 12.5 | 20.0    | 27.5 |
|       | (b)                         | Base                                   | 12.5 | 20.0    | 27.5 |
|       | (c)                         | Subbase                                | 12.5 | 20.0    | 27.5 |
|       | (d)                         | Subgrade                               | 12.5 | 20.0    | 27.5 |

(Continued)

|       |                                                                                                                                        |                  | Value            |                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|
| SR/NO | Variable                                                                                                                               | Low              | Average          | High             |
| 8     | Values for parameters<br>in fatigue equations:                                                                                         |                  |                  |                  |
|       | $\mathbf{N} = \mathbf{A} \left( \begin{array}{c} 1 \\ \mathbf{\varepsilon} \end{array} \right)^{\mathbf{\beta}} \mathbf{*} \mathbf{*}$ |                  |                  |                  |
|       | and                                                                                                                                    |                  |                  |                  |
|       | $N_{\alpha} = N_{50} - \log SD.K$                                                                                                      |                  |                  |                  |
|       | (a) "A" values                                                                                                                         | 10 <sup>-9</sup> | 10 <sup>-8</sup> | 10 <sup>-7</sup> |
|       | (b) "B" values                                                                                                                         | 3.35             | 3.9              | 4.45             |
|       | (c) Log SD                                                                                                                             | 0.25             | 0.3              | 0.35             |
|       | (d) Confidence α<br>for "N"                                                                                                            | 0.095            | 0.18             | 0.265            |
| 9     | Monthly load applications<br>"N" Actual                                                                                                | 20750            | 40500            | 60250            |

\*  $\overline{E}_{v}$  = Mean value of elastic modulus  $\sigma_{E_{v}}$  = Standard deviations in elastic modulus \*\* See Chapters 4 and 9. cut with the variable being studied given its average and high level and all the other variables kept at low levels. A similar procedure should be used for high cut, in which the variables are studied at their average and low values. A five-level experiment needs similar study at five cuts (Fig 12.1). In the present experiment the procedure required, in all, that 31 problems be solved for fifteen variables. One additional solution for the fatigue parameter B, considered to be most significant, was run for the value as 2.9. Two more solutions for all variables at their high and low values were also run. Thus the total number of solutions was 34. In Table 12.2 the cumulative final value of the cracking index (CI) of each problem after 36 months for the given monthly traffic is expressed as a percentage of the corresponding CI value of the average problem, with all parameters at the average level (Ref 171). These values of the cracking index were obtained using the computer program for cracking index, included in Appendix 4.

### RESULTS

Figure 12.3 shows the plot, for each variable, of cracking index versus the percentage of the variable in terms of its average value (Table 12.2). The relative slopes of these plots indicate the comparative significance of each variable. The plots also help suggest the comparative qualitative significance of different variables and give an initial indication of the sensitivity or rating of the variables. For example, because the slope of the curve for fatigue parameter B (Curve No. 23-24) is steepest on both sides of the average value (100), this parameter is considered most significant (significance 1) at both levels. Similarly thickness of subbase (Curve No. 7-8) is considered 14 in significance, one level above the least significant variable.

A more quantitative approach to assigning the significance of various parameters is shown in Table 12.3. For many plots in Fig 12.3, it is difficult to define any regular trend of slopes from the low side to the high side, i.e., from one end of the plot to the other. Therefore, it seems reasonable at this stage to define a constant variation in two parts, i.e., from low to average and from average to high. The plots are not always uniform and straight but in most cases, based on this subdivision, reasonable indication of the relative significance of the various variables is expected. Cracking index values for a one percent increase or decrease in average value of a particular parameter are calculated (col 4, Table 12.3) representing the slope of the

| TABLE 12.2. | CRACKING | INDEX | VALUES | FOR | VARIOUS | PROBLEMS |  |
|-------------|----------|-------|--------|-----|---------|----------|--|
|             |          |       |        |     |         |          |  |

• • •

· •

| _   |                                                       | Final Value of CI in sq ft<br>per 1000 sq ft with<br>Variable at |       | CI Expressed as<br>Percent of Average<br>Value = $\frac{(2) \text{ or } (3)}{40.7} \times 100$ |       |                  |  |
|-----|-------------------------------------------------------|------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------|-------|------------------|--|
| No. | Variable                                              | Low                                                              | High  | Low                                                                                            | High  | Figs 12.3 & 12.4 |  |
|     | 1                                                     | 2                                                                | 3     | 4                                                                                              | 5     | 6                |  |
| 1   | Axle Load                                             | 0.322                                                            | 107.0 | 0.7                                                                                            | 260.0 | 1-2              |  |
| 2   | Thickness of Asphalt<br>Concrete                      | 251.0                                                            | 1.22  | 610.0                                                                                          | 2.0   | 3-4              |  |
| 3   | Thickness of Base                                     | 56.3                                                             | 24.0  | 138.0                                                                                          | 58.0  | 5-6              |  |
| 4   | Thickness of Subbase                                  | 47.2                                                             | 35.9  | 115.0                                                                                          | 88.0  | 7-8              |  |
| 5   | Elastic Modulus E of<br>Concrete                      | 88.3                                                             | 19.7  | 216.0                                                                                          | 48.0  | 9-10             |  |
| 6   | Elastic Modulus E of Base                             | 60.9                                                             | 27.9  | 149.0                                                                                          | 68.0  | 11-12            |  |
| 7   | Elastic Modulus E of<br>Subbase                       | 48.5                                                             | 34.9  | 119.0                                                                                          | 85.0  | 13-14            |  |
| 8   | Elastic Modulus E of<br>Subgrade                      | 42.9                                                             | 14.3  | 105.0                                                                                          | 35.0  | 15-16            |  |
| 9   | Confidence Value for Elastic Modulus E $lpha$         | 85.7                                                             | 17.5  | 210.0                                                                                          | 42.0  | 17-18            |  |
| 10  | Coefficient of Variation for Elastic Modulus E $lpha$ | 12.6                                                             | 79.4  | 30.0                                                                                           | 195.0 | 19-20            |  |
| 11  | Fatigue Parameter "A"                                 | 397.0                                                            | 0.633 | 975.0                                                                                          | 1.5   | 21-22            |  |

(Continued)

۰.

۰,

<sup>147</sup> 

### TABLE 12.2. (Continued)

\* \*

|            |                                             | Final Value of CI in sq ft<br>per 1000 sq ft with<br>Variable at |         | CI Exp<br>Percent<br>Value = <u>(2</u> | oressed as<br>c of Average<br><u>) or (3)</u> x 100<br>40.7 x 100 |                                  |  |
|------------|---------------------------------------------|------------------------------------------------------------------|---------|----------------------------------------|-------------------------------------------------------------------|----------------------------------|--|
| No.        | Variable                                    | Low                                                              | High    | Low                                    | High                                                              | Curve Number<br>Figs 12.3 & 12.4 |  |
|            | 1                                           | 2                                                                | 3       | 4                                      | 5                                                                 | 6                                |  |
| 12         | Fatigue Parameter "B"*                      | 905.0                                                            | 0.00686 | 2220.0                                 | 0.01                                                              | 23-24                            |  |
| 13         | Log Standard Deviation<br>of Fatigue Curve  | 29.9                                                             | 52.4    | 70.0                                   | 120.0                                                             | 25-26                            |  |
| <b>1</b> 4 | Confidence Level for Fatigue Curve N $lpha$ | 18.3                                                             | 82.3    | 40.0                                   | 202.2                                                             | 27-28                            |  |
| <b>1</b> 5 | Actual Number of Load<br>Repetitions "N"    | 14.9                                                             | 68.5    | 36.6                                   | 168.3                                                             | <b>29-</b> 30                    |  |

### Notes:

- 1. Value of cracking index (CI) for the case when
  - a. all variables are at their average value is 407,
  - b. all variables are at their low values is 1000,
  - c. all variables are at their high values is 1.46  $\times 10^{-5}$ .
- 2. For typical pavement under consideration see Fig 8.4.

\* Final value of Cl for value of B as 2.9 is 1000.

٠.



Fig 12.3. Plots showing relative significance of various parameters.

### TABLE 12.3. PROCEDURE TO GET THE RELATIVE SIGNIFICANCE OF VARIABLES

. .

|                                       |                                                                              |                                                                          |                                                                                                 | Sequence Nos. in<br>Order of Decreasing<br>Slope |                                                   |                                             |
|---------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Parameter's<br>Name                   | X = % Increase<br>or Decrease<br>in Parameter<br>Value From<br>Average 100.0 | Y = Final CI<br>of the Problem-<br>Final CI of<br>Average<br>(CI = 40.7) | CI Value<br>per 1% of<br>Increase or De-<br>crease in Average<br>Parameter Value<br>Slope = Y/X | Lowside<br>of<br>Average<br>Value<br>of<br>Para. | Highside<br>of<br>Average<br>Value<br>of<br>Para. | Curve<br>or<br>Problem<br>No.<br>(Fig 12.3) |
| 1                                     | 2                                                                            | 3                                                                        | 4                                                                                               | 5                                                | 6                                                 | 7                                           |
| Axle Load (L)                         | -41.8                                                                        | -40.378                                                                  | 0.970                                                                                           | 5                                                |                                                   | 1                                           |
| Axle Load (H)                         | +41.8                                                                        | +66.3                                                                    | 1.586                                                                                           |                                                  | 2                                                 | 2                                           |
| Thickness AC (L)                      | -40.0                                                                        | +210.3                                                                   | -5.260                                                                                          | 2                                                |                                                   | 3                                           |
| Thickness AC (H)                      | +40.0                                                                        | -39.48                                                                   | -0.987                                                                                          |                                                  | 5                                                 | 4                                           |
| Thickness Base (L)                    | -50.0                                                                        | +15.60                                                                   | -0.312                                                                                          | 12                                               |                                                   | 5                                           |
| Thickness Base (H)                    | +50.0                                                                        | -16.70                                                                   | -0.334                                                                                          |                                                  | 12                                                | 6                                           |
| Thickness Subbase (L)                 | -25.0                                                                        | +6.50                                                                    | -0.260                                                                                          | 14                                               |                                                   | 7                                           |
| Thickness Subbase (H)                 | +25.0                                                                        | -4.80                                                                    | -0.192                                                                                          |                                                  | 14                                                | 8                                           |
| Elastic Modulus E <sub>AC</sub> (L)   | -25.0                                                                        | +47.60                                                                   | -1.905                                                                                          | 4                                                |                                                   | 9                                           |
| Elastic Modulus E <sub>AC</sub> (H)   | +25.0                                                                        | -21.00                                                                   | -0.840                                                                                          |                                                  | 7                                                 | 10                                          |
| Elastic Modulus E <sub>Base</sub> (L) | -25.0                                                                        | +20.20                                                                   | -0.808                                                                                          | 7                                                |                                                   | 11                                          |
| Elastic Modulus E <sub>Base</sub> (H) | +25.0                                                                        | -12.80                                                                   | -0.5115                                                                                         |                                                  | 10                                                | 12                                          |

(Continued)

\* ;

)

# TABLE 12.3. (Continued)

.

. .

с с торона на селото С

|                                                         |                                                                              |                                                                          |                                                                                                 | Sequence Nos. in<br>Order of Decreasing<br>Slope |                                                   |                                             |
|---------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Parameter's<br>Name                                     | X = % Increase<br>or Decrease<br>in Parameter<br>Value From<br>Average 100.0 | Y = Final CI<br>of the Problem-<br>Final CI of<br>Average<br>(CI = 40.7) | CI Value<br>per 1% of<br>Increase or De-<br>crease in Average<br>Parameter Value<br>Slope = Y/X | Lowside<br>of<br>Average<br>Value<br>of<br>Para. | Highside<br>of<br>Average<br>Value<br>of<br>Para. | Curve<br>or<br>Problem<br>No.<br>(Fig 12.3) |
| 1                                                       | 2                                                                            | 3                                                                        | 4                                                                                               | 5                                                | 6                                                 | 7                                           |
| Elastic Modulus<br>E <sub>Subbase</sub> (L)             | -25.0                                                                        | +7.80                                                                    | -0.312                                                                                          | 13                                               |                                                   | 13                                          |
| Elastic Modulus<br>E <sub>Subbase</sub> (H)             | +25.0                                                                        | -5.80                                                                    | -0.232                                                                                          |                                                  | 13                                                | 14                                          |
| Elastic Modulus<br><sup>E</sup> Subgrade <sup>(L)</sup> | -25.0                                                                        | +2.20                                                                    | -0.0879                                                                                         | 15                                               |                                                   | 15                                          |
| Elastic Modulus<br><sup>E</sup> Subgrade <sup>(N)</sup> | +25.0                                                                        | -26.40                                                                   | -1.056                                                                                          |                                                  | 3                                                 | 16                                          |
| Confidence Value for<br>Elastic Modulus Eα <b>(</b> L)  | -47.3                                                                        | +45.00                                                                   | -0.9515                                                                                         | 6                                                |                                                   | 17                                          |
| Confidence Value for<br>Elastic Modulus Εα (Η)          | +47.3                                                                        | -23.20                                                                   | -0.4910                                                                                         |                                                  | 11                                                | 18                                          |
| Coefficient of Variance<br>(L)                          | -37.5                                                                        | -28.10                                                                   | +.07490                                                                                         | 8                                                |                                                   | 19                                          |

(Continued)

# TABLE 12.3. (Continued)

٠

**4**2 <sup>1</sup>

e

ł

|                                                   |                                                                              |                                                                          |                                                                                                 | Sequence<br>Order of<br>S1                       | e Nos. in<br>Decreasing<br>Ope                    |                                             |
|---------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Parameter's<br>Name                               | X = % Increase<br>or Decrease<br>in Parameter<br>Value From<br>Average 100.0 | Y = Final CI<br>of the Problem-<br>Final CI of<br>Average<br>(CI = 40.7) | CI Value<br>per 1% of<br>Increase or De-<br>crease in Average<br>Parameter Value<br>Slope = Y/X | Lowside<br>of<br>Average<br>Value<br>of<br>Para. | Highside<br>of<br>Average<br>Value<br>of<br>Para. | Curve<br>or<br>Problem<br>No.<br>(Fig 12.3) |
| 1                                                 | 2                                                                            | 3                                                                        | 4                                                                                               | 5                                                | 6                                                 | 7                                           |
| Coefficient of<br>Variance (H)                    | +37.5                                                                        | +38.70                                                                   | +1.033                                                                                          |                                                  | 4                                                 | 20                                          |
| Fatigue Parameter<br>A-Value <b>(L)</b>           | -90.0                                                                        | +356.3                                                                   | -3.962                                                                                          | 3                                                |                                                   | 21                                          |
| Fatigue Parameter<br>A-Value (H)                  | +90.0                                                                        | -40.067                                                                  | -0.044519                                                                                       |                                                  | 15                                                | 22                                          |
| Fatigue Parameter<br>B-Value (L)                  | -14                                                                          | +864.30                                                                  | -61.700                                                                                         | 1                                                |                                                   | 23                                          |
| Fatigue Parameter<br>B-Value (H)                  | <b>+1</b> 4                                                                  | -40.693                                                                  | -2.908                                                                                          |                                                  | 1                                                 | 24                                          |
| Standard Deviation of<br>Fatigue Curve Log SD (L) | -16.6                                                                        | -10.80                                                                   | +0.650                                                                                          | 9                                                |                                                   | 25                                          |
| Standard Deviation of<br>Fatigue Curve Log SD (H) | +16.6                                                                        | +11.70                                                                   | +0.705                                                                                          |                                                  | 8                                                 | 26                                          |

·,

•

# TABLE 12.3. (Continued)

۰ ر

1

ł

ť

|                                                                                |                                                                              |                                                                          |                                                                                                 | Sequence Nos. in<br>Order of Decreasing<br>Slope |                                                   |                                             |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Parameter's<br>Name                                                            | X = % Increase<br>or Decrease<br>in Parameter<br>Value From<br>Average 100.0 | Y = Final CI<br>of the Problem-<br>Final CI of<br>Average<br>(CI = 40.7) | CI Value<br>per 1% of<br>Increase or De-<br>crease in Average<br>Parameter Value<br>Slope = Y/X | Lowside<br>of<br>Average<br>Value<br>of<br>Para. | Highside<br>of<br>Average<br>Value<br>of<br>Para. | Curve<br>or<br>Problem<br>No.<br>(Fig 12.3) |
| Confidence Level for<br>Fatigue Curve Number<br>of Load Rep.: N $\alpha$ (L)   | -47.3                                                                        | -22.40                                                                   | +0.474                                                                                          | 11                                               |                                                   | 27                                          |
| Confidence Level for<br>Fatigue Curve Number<br>of Load Rep.: $N_{\alpha}$ (H) | +47.3                                                                        | +41.60                                                                   | +0.8805                                                                                         |                                                  | 6                                                 | 28                                          |
| Actual Number of Load<br>Repetitions "N" (L)                                   | -48.5                                                                        | -25.80                                                                   | -0.528                                                                                          | 10                                               |                                                   | 29                                          |
| Actual Number of Load<br>Repetitions "N" (H)                                   | +48.5                                                                        | +27.80                                                                   | +0.5725                                                                                         |                                                  | 9                                                 | 30                                          |
| Fatigue Parameter<br>B-Value (LL)                                              | -28.2                                                                        | +959.3                                                                   | -30.00                                                                                          |                                                  |                                                   | 31                                          |

11

۰.

curves in Fig 12.3. The relative values of this slope then represent the relative significance of each parameter as entered in cols 5 and 6. The variables are arranged in order of decreasing significance in Table 12.4.

These procedures not only give the qualitative and quantitative importance of each variable, but also give the relative order of importance of the variables. However, these results are considered to be limited since they do not consider all the interactions between the different variables. A complete factorial experiment for all interactions is not possible because of the large number of variables. However, the detailed sensitivity study recommended earlier is expected to give more dependable results in a wide variety of situations. In some cases it may be advisable to run a sensitivity analysis for each design problem. It may further be advisable to compare the variation in the output due to one standard deviation in each variable rather than on the basis of 1% increase or decrease and assign the significance on this basis. However, before this can be done a study of the expected variations to calculate the standard deviation for each variable is required and is a field opened for future research.

Figure 12.4 shows curves for all parameters at various levels against the cracking index expressed as a percent of average value. For true high and low values the ranges shown would represent 100 percent variations and the actual relative significance of the various parameters would be shown. However, extreme high and low values were not considered in this study and the relative significance of the parameters shown is only for the specific values of the parameters considered in this experiment. In the detailed sensitivity study of the five-level experiment, low low and high high values represent true extreme variations of each parameter.

### OBSERVATIONS

The following tentative observations are made from this short sensitivity study:

- Fatigue parameter B in the fatigue equation 4.1, is the most significant variable and has the maximum effect on the CI values.
   Other important parameters are thickness of asphaltic concrete fatigue parameter A, axle load, and modulus of subgrade.
- (2) The effect of the resilient modulus of subgrade is least on the low side and is quite significant on the high side.

| Compag | Parameters Arranged in the Order of Effect             |                                                       |  |  |  |  |
|--------|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Number | Low Side (L)                                           | High Side (H)                                         |  |  |  |  |
| 1      | Fatigue Parameter "B"                                  | Fatigue Parameter "B"                                 |  |  |  |  |
| 2      | Thickness of Asphalt Concrete                          | Axle Load                                             |  |  |  |  |
| 3      | Fatigue Parameter "A"                                  | Elastic Modulus Subgrade                              |  |  |  |  |
| 4      | Elastic Modulus Asphaltic<br>Concrete                  | Coefficient of Variation<br>in Modulus Values         |  |  |  |  |
| 5      | Axle Load                                              | Thickness - A.C.                                      |  |  |  |  |
| 6      | Confidence Value for Elastic<br>Modulus                | Confidence for Fatigue<br>Curve $N_{oldsymbol{lpha}}$ |  |  |  |  |
| 7      | Elastic Modulus for Base                               | Elastic Modulus Asphaltic<br>Concrete                 |  |  |  |  |
| 8      | Coefficient of Variation in<br>Modulus Values          | Log SD for Fatigue Curve                              |  |  |  |  |
| 9      | Log SD for Fatigue Curve                               | Actual Traffic Repetitions N $lpha$                   |  |  |  |  |
| 10     | Actual Traffic Repetitions "N"                         | Elastic Modulus for Base                              |  |  |  |  |
| 11     | Confidence for Fatigue Curve $N_{\boldsymbol{\alpha}}$ | Confidence Value for<br>Elastic Modulus               |  |  |  |  |
| 12     | Thickness - Base                                       | Thickness - Base                                      |  |  |  |  |
| 13     | Elastic Modulus for Subbase                            | Elastic Modulus for<br>Subgrade                       |  |  |  |  |
| 14     | Thickness - Subbase                                    | Thickness - Subbase                                   |  |  |  |  |
| 15     | Elastic Modulus for Subgrade                           | Fatigue Parameter "A"                                 |  |  |  |  |

# TABLE 12.4. RELATIVE SIGNIFICANCE OF THE VARIABLES

.•

...

.

.

÷

-

...





Fig 12.4. Variation of parameters versus cracking index expressed as a percent of average value.

- (3) The thickness of asphalt concrete, fatigue parameter A in Eq 4.1, the stiffness modulus of concrete, the confidence level of modulus values, the thickness of base, and the resilient modulus of base have a more pronounced effect on the low side than on the high side.
- (4) Axle load, coefficient of variation for modulus values, confidence value for fatigue curve, standard deviation of fatigue life log SD, and number of actual load repetitions have a more pronounced effect on the high side than on the low side.

The present analysis, which was conducted using only the average values, may not give a true picture of the actual significance of the parameters, and problems with all low values and high values should also be run. For complete analysis, a five-level experiment is recommended. To examine the behavior of the models, a complete sensitivity analysis of all the models should be conducted at the earliest opportunity.

The large number of solutions run during this study not only gave a better understanding of the cracking index model, but also more confidence in the use of the model. The various runs also helped in debugging the computer program at various stages.

The magnitude of this small sensitivity analysis makes it difficult to draw any definite conclusions regarding fixing or eliminating the less important variables. From this study, all the parameters considered variable contributed significantly and none can be fixed or eliminated at this stage. However, this study establishes a criterion of relative significance which can be used to determine the precision which should be applied in estimating each variable. Fatigue parameter B is relatively significant and should be estimated very accurately. The relative significance of various parameters based on the range of values for each variables (Table 12.1) and relative effect on the output for one percent change in the average value of the parameter established on the basis of this study is shown in Table 12.4. Such relative significance is liable to change in certain cases because this type of analysis does not consider complete interaction between parameters.

Detailed criteria for using the cracking index models in the most economical way can be established only on the basis of the complete sensitivity study. In the meantime, several alternate solutions should be run to obtain the most economical design based on the procedure established in the next chapter.

### SUMMARY

In this chapter, a general format for a complete sensitivity analysis was discussed. The results of a sensitivity analysis of the cracking index model were discussed and the relative significance of the variables established, as shown in Table 12.4. Based on this study it is noted that fatigue parameter B is very sensitive and should be estimated very accurately. It is recommended that a detailed sensitivity study of all the models developed in this report should be made as soon as possible.

Verification of the proposed models in Chapter 11 and the sensitivity study in this chapter prove the applicability of these models for design of flexible pavements. The design procedure based on the proposed fatigue models is prescribed in Chapter 13. This design procedure should be used until some parameters can be fixed or eliminated and the amount of computation time reduced, based on a detailed sensitivity study.

### CHAPTER 13. SUMMARY OF PROPOSED FATIGUE MODEL

The theoretical background of the proposed distress index models was explained in earlier chapters, and these models were developed in Chapters 7 to 10. The computer program to calculate the distress indices and pavement performance is included in Appendix 4. The verification of these models with AASHO data that was made in Chapter 11 proved that these models predict the distress indices and performance of a pavement satisfactorily and that the procedure can be used for the design of flexible pavements. In this chapter a summary of the proposed design procedure is presented. Revision of the FPS model for a second generation model is discussed. A comparison of the existing flexible pavement systems computer program with the present design procedure is made by solving example problems.

### PROPOSED FATIGUE MODEL

This section describes direct use of the proposed procedure for the design of flexible pavements. Use of the procedure in the existing FPS is discussed in the next section. The steps required to solve a design problem by the proposed design procedure (Fig 13.1) are:

- Collect data on traffic, materials, and environment. A list of all the input data required is included in Appendix 4. The traffic volume and design period are decided from the traffic record and project planning.
- (2) Characterize Materials: Material characterization is an important part of the whole design process. Material parameters should be ascertained on the basis of laboratory test results, as explained in Chapter 5 and Appendix 2.
- (3) Initial Pavement Condition: The design and performance of the pavement require assumption of the initial slope variance SV and initial and final values of the pavement PSI. Through an engineering judgment an evaluation is made of these parameters in advance. For example, just after the construction of pavements, the initial value of the roughness index, log (1 + SV), generally varies from 0.3 to 0.6 and the PSI from 4.5 to about 3.8, depending upon the importance of the highway. The terminal PSI varies from 3.0 to 1.5, at which stage either an overlay or a reconstruction will be required.



Fig 13.1. Flow diagram for present design procedure and FPS second generation. (Continued)



- (4) Assume Minimum Layer Thickness: Based on engineering judgment, trial layer thicknesses for the pavement section are assumed.
- (5) Calculate Distress Index: Based on the above data and information, the distress index values (CI, RDI, and RI) and pavement performance PSI for the trial traffic and design period are calculated with the distress models.and computer program developed in this report (Appendix 4).
- (6) Compare Final PSI: The computed terminal PSI is compared with the desired value. If the values compare within the desired accuracy, the assumed design is satisfactory; otherwise, the layer thickness assumed is revised and another trial comparison is made, until a satisfactory solution is reached. Layer thickness combinations may have to be tried also to find the most economical design. Although several designs, with different layer thickness combinations, may be structurally equal, only one is economically best.

### PROPOSED FPS SECOND GENERATION

The flow diagram of the proposed FPS second generation (Fig 13.1) shows the proposed procedure included in the existing FPS programs. Mainly, it is a question of replacement of the physical models of the existing FPS. From the new distress index models, PSI due to traffic load is computed at the end of an assumed performance period. Adjustments are made to this PSI for the existing swelling clay model of the FPS and for other nontraffic associated PSI models to be added later. This adjusted PSI is compared with the desired PSI and a satisfactory design is obtained. Several other structurally satisfactory designs can be obtained, and these designs are optimized by the existing FPS economic and other models to get the array of designs for final selection for the no-overlay case. The computations for overlays are made for several performance periods, as shown in Fig 13.1 and all satisfactory designs are again optimized by the existing FPS models to give the final array of design from which final selection is made.

Figure 13.2 shows the existing and proposed generation of working pavement systems. The modified and replaced items are marked. The deflection coefficients have been replaced by elastic constants, fatigue properties, and stochastic variations in these parameters. The deflection term is replaced by stress and strain computations. Instead of a direct empirical deflection versus performance equations in the existing procedure, the distress indices are computed and from the PSI versus distress indices correlation the performance of the pavement is obtained. The overlay computations are made as shown in



é.

Fig 13.1, with proper consideration of fatigue damage at the time of the overlay. The cost models, which compute the array-choices, are not changed.

### Computation of Stress and Strain

At present, the computer program developed in this report takes about 60 seconds to solve one problem. In solving one problem the computation for strain is made 24 times while the computation for stresses goes through the layered subroutine 12 times. Therefore, most of the computer time is spent on these computations. To make the computer program more efficient, it is necessary to find an efficient way to calculate stresses and strains and to replace the layered subroutine. The simplest way would be to solve some factorial problems for various combinations of important parameters  $(E_i, D_i, and W_i)$  in the layered program, and to get regression equations to determine stresses and strains. It is seen that a direct factorial of the important parameters involved gives an unfeasible number of problems to be solved. Therefore, some simplified procedure needs to be adopted. During a study of the analysis of layered program it was found that stress in the layers is a function of the modular ratios of the layers rather than their absolute values (Ref 131). This is verified and reported by Shahin (Ref 166). Furthermore, Heukelom and Klomp (Ref 60) found from field observation that the modular ratios of untreated pavement layers do not exceed 1.5 to 2.5. For a fixed modular ratio, the number of variables in the layered program is reduced, thereby considerably reducing the number of factorial solutions. This or some other suitable approach should simplify the stress and strain computation in a layered system. Scrivner, at the Texas Transportation Institute, is also working to simplify this problem. Once efficiency in stress and strain calculation is achieved, the problem of computer time in the present procedure is solved.

### Application of Damage Theory for Overlay Design

In the existing FPS models, it is assumed that after an overlay the resulting total thickness of asphalt concrete behaves as one layer, with the original material properties of all layers. Although in reality some allowance is required to take into account the change in material properties due to traffic loads and time, no such allowance is made in the existing FPS. In the proposed procedure, for layers other than the surface layer, it is planned to account for this change in material properties in the calculations of the rut depth index. The cumulative net rut depth index after an overlay is calculated by subtracting the rut depth index at the time of the overlay from the cumulative

rut depth index at any time after an overlay. After damage to the surface layer, a new layer is added but the old surface layer is cracked. At present there is no rational method available to take this damage into account. An advantage of the proposed procedure, which is based on fatigue and damage hypotheses, is that this damage to the pavement can be taken into account. In a pavement layer, according to Minor's hypothesis, failure is considered to occur when the cumulative damage exceeds 1.0 because initial damage for a new facility is zero. Thus, for a new pavement the cracking index is computed based on the probability of cumulative damage exceeding one. However, when a pavement is overlaid it has already experienced some cumulative damage  $\left(\sum_{o}^{t} \sum_{o}^{j} \frac{n_{j}}{N_{z}}\right)$ . Thus, for an overlaid pavement, an estimate of the mean initial damage x due to traffic already experienced by the pavement should be made and subtracted from 1.0 (Ref 116). After an overlay, the cracking index should be computed based on the probability that cumulative damage due to new traffic will exceed (1.0 - x). This procedure should be adopted in the second generation FPS. An overlay example problem based on this criteria is shown in Fig 13.3. A pavement with layer thicknesses of 3.5, 9, and 8 inches is considered. For a terminal PSI of 2.5, this pavement lasts for 5.5 months. After an overlay of 1-1/2 inches, for the same constant traffic, the pavement lasts for 13 months as compared to 16 months based on the criteria of the existing FPS.

### EXAMPLE PROBLEM - COMPARISON OF THE PRESENT FPS AND PROPOSED FATIGUE MODELS

To develop confidence in the procedure presented in this report, example problems were run comparing the proposed model with the existing FPS method. Since the comparisons were carried out with AASHO Road Test data, in these example problems high traffic values corresponding to the AASHO Road Test data are adopted. Thus, short time periods for the pavement performance are the result due to high traffic. However, in actual problems, the lower traffic values will result in corresponding increase in the actual performance time periods.

In the first example problem, AASHO Road Test Section 623, which carried 18-kip single axle applications, is designed using the AASHO FPS model. The strength coefficient values assumed are the same as developed in the AASHO Road Test. The input and output are shown in Tables A9.1 and A9.2, respectively.



.

**,** '

¢

t.

Fig 13.3. Typical overlay design based on fatigue and damage criteria.

'+
To simulate the design for the AASHO Road Test section, no swelling effect was assumed. The initial present serviceability index was assumed as 4.2, which corresponds to the initial observed value of the AASHO Road Test Section 623. The average daily traffic values at the beginning and end including accumulated 18-kip axle applications are based on average values of traffic used on the above AASHO Road Test section. The maximum and minimum layer thicknesses are restricted to 3, 6, and 8 inches for surface, base, and subbase, respectively, and minimum and maximum time for the overlay are restricted to obtain the design life for this thickness combination without an overlay and for an assumed terminal PSI of 1.5.

A few trial solutions established the stiffness coefficient of the FPS deflection model giving the same performance as that predicted by the FPS AASHO model. Figure 13.4 shows performance curves for the pavement section under consideration from various methods, as detailed in the figure. The performance curves are quite close and give confidence in the present procedure.

In the second example, with 18-kip axle load repetitions of the AASHO Road Test data, problems are run with FPS, AASHO and deflection model computer program to obtain a set of structurally equal designs. The input to the program for the FPS AASHO model is shown in Table A9.3 while output is shown in Table A9.4. The input and output for the deflection model are similar. The stiffness coefficients for deflection models are the same as those used in the first example.

The data for swelling clay, traffic, and PSI are the same as taken for the first example. However, the maximum and minimum layer thicknesses are input to get some feasible designs. The minimum and maximum times of overlay are made equal to the performance period to get structural designs to last for approximately the time of the AASHO Road Test period, 2.2 years without an over-lay.

These computations have given several designs with different layer thickness combinations, but with the same performance, i.e., the same structural number in the AASHO model and the same surface curvature index (SCI) in the deflection model of FPS. Therefore, as far as FPS is concerned all these combinations have the same structural performance. For comparison the following combinations are considered:



.

• '

.

t

Fig 13.4. Comparison of fatigue method with FPS.

۰,

۰.

| Concrete | Base | Subbase |
|----------|------|---------|
| 2.75"    | 9"   | 11"     |
| 3.5"     | 9"   | 8"      |
| 4.5"     | 9"   | 4"      |

Figure 13.5 shows that, though the FPS predicts the same performance, the different thickness combinations do influence the performance of a pavement. It is shown that the 3.5, 9, and 8-inch thickness combination has the same performance in the FPS and fatigue procedures, but the performance of the other combinations is significantly different in the fatigue procedure.

The third example (Fig 13.6) shows the effect of support variations. In the FPS, a constant support condition throughout the year is assumed, which is not the real world situation. The performance curves for the FPS deflection model for 50 percent and 80 percent confidence are also shown. The fatigue procedure with some material properties assumed constant throughout the year shows the same performance as FPS. The effect of change in the material properties is shown. The figure also shows the performance when account is taken of monthly variations in the material properties. The figure shows that the assumption of a constant support condition in FPS can give designs which fail much earlier than predicted.

For FPS, the month when the pavement is opened for traffic and monthly traffic distributions are immaterial when no monthly variations in the material properties are taken into account. However, for the proposed fatigue procedure the opening month and monthly traffic distributions and material properties variations are important because the performance and the deterioration in the PSI of the pavement at particular time depend upon the material properties at that time. The effect of monthly traffic distribution and of opening month, for short design period, is shown in Fig 13.7. This is a more realistic approach since, generally, in practice failures have been observed in the spring months.

Figure 13.8 shows the performance curves, for the three combinations of layer thicknesses, as computed by FPS and the proposed fatigue procedure. The proposed procedure is more realistic because, as expected, the performance curves for the three thickness combinations are different in the case of the proposed procedure as compared to the one and same performance curve in case of existing FPS. In this particular example, the design life for different combinations varied by 50 percent. It is also observed that increasing the



Fig 13.5. Thickness combinations influence performance.





Fig 13.6. Effect of support variation in fatigue procedure.



Fig 13.7. Performance curve - fatigue procedure for different starting time.

Note: For typical pavement section see Fig 8.4.





layer depths from 3, 6, and 8 inches to 3.5 - 9 - 8 inches increased (Figs 13.4 and 13.8) the life of the pavement in FPS from 7 to 21 and 29 months for deflection and AASHO models, respectively, which does not seem reasonable. However, for the proposed fatigue procedure the life increased by 16 percent.

From the results discussed herein the fatigue design procedure seems to give better and more realistic designs of flexible pavements than based on the existing FPS models.

# CHAPTER 14. IMPLEMENTATION

The verification of the models developed in this report and their accurate predictions of the observed data in Chapter 11 along with the results of the sensitivity study in Chapter 12 give confidence in using the proposed procedure for the design of flexible pavements and in including this procedure in the existing FPS. In Chapter 13, revision of the existing FPS was discussed. Including the present design procedure and making the revision to the existing FPS led to the second generation FPS. In its implementation, new inputs are required (see Appendix 4). Implementation of the proposed procedure is discussed in this chapter.

### STRESS AND STRAIN COMPUTATIONS

In the proposed procedure stresses and strains are calculated from the layered program. The inputs for this analysis include the elastic modulus, Poisson's ratio, and stochastic variations in modulus for each material. These properties of the materials are characterized as in Chapter 5. In the previous chapter it was noted that stress and strain calculations in the present analysis, by the direct use of the layered subroutine, should be improved and replaced by a more efficient approach. An alternate approach was discussed and further research to make the present procedure more efficient was recommended. The work on distress due to major temperature cyclic effects is also to be included in FPS second generation and is expected to take additional time at the Center for Highway Research. During this time the research efforts may also be continued to reduce the computation time in the proposed procedure and revision of the present FPS may be made to include the present procedure as well as the major temperature effects. To help with the problem of long computation time only the limited number of designs predicted as the most optimum by the existing FPS should be checked by the present design procedure for correct performance. This will avoid the time used for computations on infeasible and unacceptable designs. Once an array of most suitable designs from the existing FPS is known they are checked by the proposed procedure and

final selection is made. It may be necessary once more to run the cost analysis for these revised designs through the FPS cost models. This tentative design procedure, shown in Fig 14.1, is expected to reduce the computation time considerably.

# OVERLAY DESIGN

Revision of the existing FPS overlay design procedure is proposed, following the procedure discussed in the previous chapter, which is based on the fatigue theory and cumulative damage hypothesis. The computer program developed for the present design procedure needs a small change for overlay designs. For computation of the cracking index after an overlay, the log 1.0 term in Eq 8.5 needs to be changed to log(1.0 - x), where x is the cumulative damage  $\left(\sum_{0}^{t} \sum_{0}^{j} \frac{n_{j}}{N_{j}}\right)$  up to the time of overlay. For the rut depth index

the change for an overlay design requires that the rut depth index at the time of an overlay  $\text{RDI}_{oL}$  should be subtracted from the rut depth index at any time after an overlay  $\text{RDI}_L$  to get the correct net rut depth index after an overlay  $\text{RDI}_L$ . The effect of swelling clay is already considered by the existing FPS.

### REPEATED LOAD-DEFORMATION DATA

The regression models for computing the permanent strain in a pavement (Eqs 5.1, 5.2, and 5.4) are based on the typical characteristics of coarsegrained base and subbase materials and fine-grained subgrade materials of the AASHO Road Test. Characteristics of the coarse-grained materials of the AASHO Road Test are similar to those of materials tested at the Texas Transportation Institute (Ref 35), as mentioned in Chapter 5. These regression models are only used for computations of the rut depth index. Any small variation in the rut depth index is not comparatively important in the performance equation (Chapters 7 and 11) and does not affect the PSI significantly. In addition, any change in the above typical regression models based on actual materials used in a particular pavement probably does not affect the rut depth appreciably. Thus, though these regression models should be revised for accurate computations, based on actual repeated load-deformation characteristics of a



Fig 14.1. Tentative design procedure utilizing existing FPS.

particular material used in a particular pavement as discussed in Chapter 5, even these models are expected to give results which do not affect the final PSI significantly.

### EQUIVALENCIES

The present procedure has the capability to compute the distress for various single axle load groups of any load intensity, and it is not necessary to change into equivalent 18-kip axle applications as in the existing FPS. However, it is seen that separate computations for various load groups consume much computer time. Thus, to save computation time it is suggested that equivalencies to convert the various load groups into one should be used. The present procedure was developed based on the verification of the AASHO Road Test data. Moreover, in the HRB Asphalt Concrete Structural Design Workshop, 1970 (Ref 63 and Appendix 1), it was suggested that the load equivalency factors developed from the AASHO Road Test equations be used for the present. These equivalencies are based on fatigue and damage criteria. Thus, it is recommended that the equivalencies based on the AASHO Road Test for different load groups and axle combinations be utilized in the design procedure to reduce computation time.

## PRESENT SERVICEABILITY INDEX

The computation of present serviceability index with the proposed procedure and the modifications needed in the existing FPS performance equation were discussed in Chapter 3. With slight modifications in Eq 3.2, the proposed procedure can be included in the FPS.

## TRAFFIC COMPUTATIONS

In the existing FPS, Eq 3.3 is utilized for traffic computations. In the proposed procedure the actual load repetitions for each load group or Eq 3.4 is utilized for traffic instead of 18-kip equivalent repetitions. However, existing Eq 3.3 can also be utilized in the second generation FPS with slight modifications in the proposed procedure, by including this equation in addition to Eq 3.4 or replacing Eq 3.4.

### TIME SUBROUTINE

The time subroutine of the existing FPS can be utilized in a modified form for the convergence process of performance time for the desired PSI, traffic, layer thicknesses, and distresses based on material properties.

# LABORATORY INVESTIGATIONS

Test procedures required to characterize the material properties which are used in the present design procedure are discussed in Chapters 4 and 5. Laboratory testing programs should be initiated at the earliest opportunity to characterize the fatigue material properties properly and to include the determination of the parameters needed in this development, so that reliable data may be created for implementation of this procedure for use of specific materials in a particular pavement. In the meantime, the design may have to rely on data in the literature or from other sources to obtain values for all variables used in the present method. The fatigue parameters B and A are very sensitive variables, and their values need accurate determination. Thus an immediate testing program to create accurate data is important.

# LIMITATIONS FOR SURFACE TREATMENT AND THIN ASPHALTIC CONCRETE SURFACES

The proposed models for cracking index and roughness index are derived based on the following hypotheses:

- (1) The cracking index in a pavement system is caused by the repeated flexural tensile strain developed in the asphaltic concrete surface layer due to applied wheel loads.
- (2) The constant stress mode of loading conditions is most logical to determine the fatigue response of asphalt concrete for flexible pavement design.
- (3) The roughness index represents most of the detrimental effects of cracking and that cracking is a good indicator of roughness in a pavement.

Under the above logical hypotheses, the proposed cracking index and roughness index models are not applicable in case of the surface treatments. For thin asphalt concrete surfaces less than 1 inch thick the models are not expected to give satisfactory results, and therefore the models may not be directly used for these cases. Further research work is needed to modify the models for their use for thin surfaces.

## PREDICTION ERRORS IN THE MODELS

ş

The prediction errors in the proposed models were discussed in Chapter 11 and results of a short sensitivity analysis were discussed in Chapter 12 to create a confidence in use of the proposed models. However, for the variations in the performance predictions at various confidence levels under different combinations of input variables and for determining the relative significance of these variables a detailed sensitivity analysis shall have to be performed. PART V

.\*

."

,,)

۰.

ł

•

CLOSURE

# CHAPTER 15. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In Chapter 1, the general study objective of development of new design models for flexible pavement system second generation, based on best available technology, to update the existing FPS model, was mentioned. The author feels, in his opinion, that this objective has been achieved successfully herein by development of the various distress models and quantifying the present serviceability index value from these models. The inclusion of this procedure in FPS requires revisions in only the structural design portion and corresponding material characterization of the systems, while the user's cost and other economic models will continue to remain the same.

#### SUMMARY

4

In the first few chapters, the existing design methods and theories were discussed and need for a new systems design procedure, considering the fatigue theory, linear elastic layered theory, and probability theory, was established. The concept of distress and failure in the pavement, along with the AASHO concept of performance and present serviceability index, was discussed. Based on these concepts, the distress models for cracking index, roughness index, rut depth index, and overall present serviceability index were developed in terms of elastic and fatigue material properties (which can be predicted in the laboratory) and their stochastic variations with space and time, loading, environmental conditions, and load-deformation characteristics. These distress models are proposed to replace the empirical relationship used at present to simulate the transformation between the input variables and performance of a pavement.

Similarity and accurate predictions of the distresses actually observed for the AASHO Road Test sections and sensitivity analyses performed for the cracking index models give the confidence in the use of the models and procedure developed in this report. The development and the use of the computer program makes it easy to handle the calculations involved in the systems.

The proposed models can be used directly and can also be included in the existing FPS models leading to the flexible pavement system second generation. To reduce the computer time, the proposed models may be used to provide an independent check on current design procedures. The present method of overlay design is proposed to be replaced by the method which is based on fatigue theory and damage criteria. The example problems are solved which show the improvements of the proposed method and add to the confidence in use of the proposed models for the design of flexible pavements.

The concept of fatigue and probability theory in pavement design presented herein, though recent, is well recognized now. Their proper use in the design of flexible pavements for the first time, in the present form, adds a new dimension to the pavement design field.

The need of (1) proper relationship between distress mechanism, performance, and serviceability; (2) considerations of stochastics in pavement design; (3) distress due to fatigue in the pavement; and (4) applicability of linear theories to predict stress and strains in the pavement was recognized in the first few priority items for research by the HRB Workshop in January 1970, held at Austin, Texas (Appendix 1). The author feels that this report is a first successful attempt in this direction.

In summary, a comparison of various field observations with the predicted distress values gives a large degree of initial confidence in the design models and, in the author's opinion, the method is ready for immediate practical application, although it is only long-term observation and feedback process that will truly verify the models.

#### CONCLUSIONS

:

The flexible pavement design models presented in this report are based on sound fundamentals using the best state-of-the-art information available. The author feels that the specific objective of this study, detailed in Chapter 1, has been well accomplished.

Following are the specific conclusions for this study.

 A study of the development of the design methods of flexible pavement shows the need of a rational method of design which can predict the performance of a pavement under various sets of conditions to update the existing FPS.

- (2) The review of current procedures and methods of flexible pavement design reveals that only a few bona-fide procedures exist and those in practice now certainly need improvements in various ways. The proposed design method will go a long way to fulfill these needs.
- (3) The characterization of materials is a very important part of the whole design procedure. Proper laboratory techniques need to be extended for material testing. In the meantime, the engineer may have to rely on data in the literature or from other sources to obtain values for all variables used in the present method.
- (4) The use of linear layered elastic theory may be considered as the most appropriate method for the calculations of stress and strains in various layers, although some more efficient approach to make these computations is needed.
- (5) The development of the proposed method in the present form gives a new added dimension in the pavement design field and gives the realization of the importance of stochastic principles over the deterministic models.
- (6) The proposed distress models have been verified successfully with the AASHO Road Test data which gives the confidence in the use of these methods. Example problems show the improvements of the proposed method over the existing FPS.
- (7) This method shows some combinations to be unacceptable, which are acceptable with the present design.
- (8) The new design models are more realistic and are based on sound and latest state-of-the-art. The models can be easily included in the existing flexible pavement systems model without many changes except in the structural design portion of the systems program. The proposed method can also be used directly for design of flexible pavements.
- (9) Since the conventional hand solutions are a physical impossibility in solving the problems with these new models, the necessary computer programs have been developed to aid the design process.
- (10) The developed design models are considered to be ready for an immediate application in the field.
- (11) Deteriorated condition of the pavement should be adequately considered at the time of the overlay construction, based on fatigue principal. The proposed method of overlay design, based on fatigue theory, damage hypotheses, and stochastic concepts, presented in this report, adds a new dimension to the overlay design.

#### RECOMMENDATIONS

The author recommends that

 The models developed in this report may be put to immediate applicacation for the design of flexible pavements and procedure included in the existing systems model to create FPS second generation.

- (2) Research efforts should be continued to include the fatigue effects of the nontraffic-associated temperature cycles and foundation movements.
- (3) The existing FPS model may be revised to include the developed models for traffic-associated distress and for nontraffic-associated distress when such models are ready.
- (4) Laboratory testing programs should be initiated to characterize the material properties properly and to include the determinations of the parameters needed in this development.
- (5) Necessary feedback data banks should be created and kept up-to-date to update the method as and when required.
- (6) It is also important that necessary efforts are continued to make the developed computer program more efficient.
- (7) A sensitivity study of the parameters involved should be made and their significance in the program should be evaluated.
- (8) Consideration of the variability and probability may be extended for other parameters in the systems design not considered in these developments.
- (9) Maintenance and other models in the FPS may be updated.
- (10) The swelling clay effect needs to be considered in some more rational way in the systems design model.
- (11) Cracking index distress model, presented herein, has been based on the constant stress conditions in the pavement. This is a conservative situation in some cases in comparison to the constant strain conditions, especially for thin pavements. Further research efforts are needed as to the application of these two cases in different situations.
- (12) The proposed cracking index and roughness index models are not applicable in case of the surface treatments. For thin asphalt concrete surface of less than 1-inch thickness, the models are not expected to give satisfactory results. Further research efforts may be extended to modify the models for their use in these cases.
- (13) The principles of design and development of models discussed in this report should be extended for the existing rigid pavement system.
- (14) Efforts should be continued to make the present method of layered computer program to calculate stress and strain more efficient and/or replaced by a more efficient approach.

(15) The proposed models could be used to give better evaluation of some of current blackbases being proposed for pavements by the Texas Highway Department.

#### REFERENCES

- 1. Alden, H. L., and E. B. Roessler, <u>Introduction to Probability and</u> <u>Statistics</u>, Freeman & Sons, 1964.
- 2. American Society for Testing Materials, <u>Revision of Section II</u>, <u>Manual</u> on Fatigue Testing, <u>STP No. 91</u>, Philadelphia, 1959.
- Avramesco, A., "Dynamic Phenomena in Pavements Considered as Elastic Layered Structures," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- Bateman, John H., <u>Highway Engineering</u>, Fifth Edition, John Wiley & Sons, Inc., New York, 1948.
- Bazin, P., and J. B. Saunier, "Deformability, Fatigue, and Healing Properties of Asphalt Mixes," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- Barksdale, R. D., and A. H. Leonards, "Predicting Performance of Bituminous Surfaced Pavements," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 321-340.
- Benkelman, A. C., R. I. Kingham, and H. Y. Fang, "Special Deflection Studies on Flexible Pavements," <u>Special Report 73</u>, Highway Research Board, 1962.
- 8. Boussinesq, J., "Application des potentials a l'etude de l'equelibre et de mouvement des solids elastique," Gauthier-Villars, Paris, 1885.
- 9. Bradbury, Royall D., "Reinforced Concrete Pavement," Washington Wire Reinforcement Institute, 1938.
- Brown, James L., Larry J. Buttler, and Hugo E. Orellana, "A Recommended Texas Highway Department Pavement Design System Users' Manual," Research Report No. 123-2, Texas Highway Department, March 1970.
- 11. Brown, S. F., and P. S. Pell, "An Experimental Investigation of the Stresses, Strains, and Deflections in a Layered Pavement Structure Subjected to Dynamic Loads," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 487-504.

- 12. Bureau of Public Roads, "Quality Assurance in Highway Construction," by Edwin C. Granley, <u>Public Roads</u>, August 1969.
- Burmister, D. M., "Evaluation of Pavement Systems of the WASHO Road Test by Layered System Methods," <u>Bulletin 177</u>, Highway Research Board, 1958.
- Burmister, D. M., "The Theory of Stresses and Displacements in Layered Systems and Application to the Design of Airport Runways," <u>Proceed-ings</u>, Vol 23, Highway Research Board, 1943.
- 15. Buttler, Larry Jack, "Sensitivity Study of a Design System for Determining Thickness of Asphaltic Concrete Overlay in Rigid Highway Pavement," M.S. Thesis, The University of Texas at Austin, May 1971.
- 16. Carey, W. N., Jr., and P. E. Irick, "The Pavement Serviceability-Performance Concept," <u>Bulletin 250</u>, Highway Research Board, January 1960.
- 17. Center for Highway Research, "FAOV-01 Statistical Computer Program for the Analysis of Variance with Factorial Treatment Combinations," The University of Texas at Austin, 1968.
- Center for Highway Research, "STEP-01 Statistical Computer Program for Stepwise Multiple Regression," The University of Texas at Austin, 1968.
- 19. Chan, C. K., and H. B. Seed, "A Study of the Deformation Characteristics of the AASHO Road Test Subgrade Under Repeated Loading," unpublished report to the AASHO Road Test staff, 1960.
- 20. Chan, L. S., "An Investigation of Stress-Strain and Strength Characteristics of Cohesionless Soils," <u>Proceedings</u>, Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Vol V, 1948.
- 21. Chen, H. H., and R. G. Hennes, "Dynamic Design of Bituminous Pavements," <u>The Trend in Engineering</u>, Vol 2, No. 1, January 1950, pp 22-25.
- 22. Coffman, Bonner S., David C. Kraft, and Jorge Tamayo, "A Comparison of Calculated and Measured Deflections for the AASHO Road Test," <u>Proceedings of the Association of Asphalt Paving Technologists</u>, Vol 33, 1964.

- 23. Committee E-9 on Fatigue, American Society for Testing and Materials, <u>A Guide for Fatigue Testing and the Statistical Analysis of Fatigue</u> Data, <u>STP No. 91-A</u>, Second Edition, Philadelphia, 1963.
- 24. Deacon, John Allen, "Fatigue of Asphalt Concrete," Ph.D. Dissertation, University of California, Berkeley, 1965.

- 25. Deacon, J. A., and C. L. Monismith, "Laboratory Flexural-Fatigue Testing of Asphalt Concrete with Emphasis on Compound-Loading Tests," a paper presented at the Annual Meeting of the Highway Research Board, Washington, D. C., January 1966.
- 26. Deacon, John A., "Material Characterization-Experimental Behavior," a paper presented at the Workshop on Structural Design of Asphalt Concrete Pavement Systems, The University of Texas at Austin, December 7-10, 1970.
- 27. Dehlen, G. L., "Flexural of a Road Surfacing, Its Relations to Fatigue, and Factors Determining Its Severity," <u>Bulletin 321</u>, Highway Research Board, 1962.
- 28. <u>Design Manual for Controlled Access Highways</u>, Texas Highway Department, January 1960.
- 29. Dolan, T. J., <u>Basic Concepts of Fatigue Damage in Metals, Metal Fatigue</u>, McGraw-Hill, New York, 1959.
- 30. Dommasch, D. O., and C. W. Laudeman, <u>Principles Underlying Systems Engi</u>neering, Pitman Publishing Corporation, New York, 1962.
- 31. Dorman, G. M., "The Extension of Practice of a Fundamental Procedure for the Design of Flexible Pavements," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 785-793.
- 32. Dorman, G. M., and J. M. Edwards, "Developments in the Application in Practice of a Fundamental Procedure for the Design of Flexible Pavements," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 99-109.
- Drake, W. B., and James H. Havens, 'Kentucky Flexible Pavement Design Studies," <u>Bulletin No. 52</u>, Engineering Experiment Station, University of Kentucky, June 1959.
- 34. Duncan, J. M., Carl L. Monismith, and E. L. Wilson, "Finite Elements Analysis of Pavements," <u>Highway Research Record No. 228</u>, Highway Research Board, 1968.
- 35. Dunlap, A. Wayne, "Deformation Characteristics of Granular Materials Subjected to Rapid, Repetitive Loading," Research Report No. 27-4, Texas Transportation Institute, Texas A&M University, College Station, Texas, November 1966.
- Ellis, D. O., and F. J. Ludwig, <u>Systems Philosophy</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.
- 37. "Engineering and Design Flexible Air Force Pavements," <u>Corps of</u> Engineers' Manual EM1110-45-302, August 15, 1958.

- 38. Epps, Jone Albert, "Influence of Mixture Variables on the Flexural Fatigue and Tensile Properties of Asphalt Concrete," Ph.D. Dissertation, University of California at Berkeley, September 1968.
- 39. Epremian, E., and R. F. Mehl, "The Statistical Behavior of Fatigue Properties and the Influence of Metallurgical Factors," <u>Symposium</u> on Fatigue with Emphasis on Statistical Approach, Part II, <u>STP</u> <u>No. 137</u>, American Society for Testing Materials, Philadelphia, 1953, pp 25-57.
- 40. Fang, H. Y., and J. H. Schaub, "Analysis of the Elastic Behavior of Flexible Pavement," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 719-729.
- 41. Ferrari, P., "The Behavior of Asphalt Pavements Under Variable Repeated Loads," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- 42. Finn, F. N., "Factors Involved in the Design of Asphalt Pavement Surfaces," NCHRP Report 39, Highway Research Board, 1967.
- 43. Finn, F. N., W. R. Hudson, B. F. McCullough, and K. Nair, "An Evaluation of Basic Material Properties Affecting Behavior and Performance of Pavement Systems," a paper presented at the meeting of the Highway Research Board, Washington, D. C., January 1968.
- 44. Freudenthal, A. M., and E. J. Gumbel, "Distribution Functions for the Prediction of Fatigue Life and Fatigue Strength," <u>Proceedings</u>, International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London, 1956, pp 262-271.
- 45. Freudenthal, A. M., and R. A. Heller, "On Stress Interaction in Fatigue and a Cumulative Damage Rule," <u>Journal of the Aero-Space Sciences</u>, Vol 26, No. 7, July 1959, pp 431-442.
- 46. Gallaway, T. M., "Implied Fatigue Life of Cement Treated Base," unpublished term project for C.E. 391P.1, The University of Texas at Austin, May 1970.
- 47. Gardner, L. J., and E. L. Skok, Jr., "Use of Viscoelastic Concepts to Evaluate Laboratory Test Results and Field Performance of Some Minnesota Asphalt Mixtures," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- 48. Garrison, W. A., "Three-Year Evaluation of Shell Avenue Test Road," <u>Highway Research Record No. 117</u>, Highway Research Board, 1965.
- 49. Gray, W. H., "A Study of the Fatigue Properties of Lightweight Aggregate Concrete," Purdue University Joint Highway Research Project, Lafayette, Indiana, 1960.

- Grumm, Fred J., "Designing Foundation Courses for Highway Pavements and Surfaces," <u>California Highways and Public Works</u>, Vol 20, No. 3, March 1942, pp 6-9, 20.
- 51. Haas, R. C. G., "Developing a Pavement Feedback Data System," Research Report No. 123-4, Center for Highway Research, The University of Texas at Austin, August 1970.
- 52. Haas, R. C. G., "The Performance Behavior of Flexible Pavements at Low Temperatures," Ph.D. Dissertation, University of Waterloo, June 1968.
- 53. Hagerup, E., "Flexural Fatigue Testing of Polyesters," <u>Journal of</u> <u>Applied Polymer Science</u>, Vol 7, No. 3, May 1963, pp 1093-1116.
- 54. Hank, R. J., and F. H. Scrivner, "Some Numerical Solutions of Stresses in Two and Three Layered Systems," <u>Proceedings</u>, Vol 28, Highway Research Board, 1948.
- 55. Harris, Frederick A., "Selection and Design of Semi-Flexible and Conventional Type Pavements," <u>Proceedings</u>, Vol 35, Highway Research Board, 1956.
- 56. Hansen, Torben C., "Notes from a Seminar on Structure and Properties of Concrete," Department of Civil Engineering, Stanford University, Stanford, California, September 1966.
- 57. Haynes, J. H., and E. J. Yoder, "Effects of Repeated Loading on Gravel and Crushed Stone Base Course Materials Used in the AASHO Road Test," <u>Highway Research Record No. 39</u>, Highway Research Board, 1964, pp 82-96.
- 58. Heukelom, W., "Observations on the Rheology and Fracture of Bitumens and Asphalt Mixes," <u>Proceedings of the Association of Asphalt Paving</u> <u>Technologists</u>, 1966.
- 59. Heukelom, W., and A. J. G. Klomp, "Consideration of Calculated Strains at Various Depths in Connection with the Stability of Asphalt Pavements," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 155-168.
- 60. Heukelom, W., and A. J. G. Klomp, "Dynamic Testing as a Means of Controlling Pavements During and After Construction," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 667-678.
- 61. Heukelom, W., and A. J. G. Klomp, "Road Design and Dynamic Loading," <u>Proceedings of the Association of Asphalt Paving Technologists</u>, Vol 33, 1964.
- 62. Hicks, R. G., "Fatigue of Asphalt Concrete," Thesis, Master of Science in Mechanical Engineering, University of California, 1965.

- 63. Highway Research Board, "Structural Design of Asphalt Concrete Pavement Systems," Proceedings of Workshop held 7-10 December 1970, Austin, Texas.
- 64. Highway Research Board, "AASHO Interim Guide for Design of Flexible Pavement Structures," AASHO Committee on Design, April 1962.
- 65. Highway Research Board, "AASHO Interim Guide for Design of Flexible Pavements," AASHO Committee on Design, October 1961.
- 66. Highway Research Board, "AASHO Road Test Technical Staff Papers," AASHO Road Test technical staff, Special Report 66, 1961.
- 67. Highway Research Board, "The AASHO Road Test: Report 2, Materials and Construction," Special Report 61B, 1962.
- 68. Highway Research Board, "The AASHO Road Test: Report 3, Traffic Operations and Pavement Maintenance," Special Report 61C, 1962.
- 69. Highway Research Board, "The AASHO Road Test: Report 4, Bridge Research," Special Report 61D, 1962.
- 70. Highway Research Board, "The AASHO Road Test: Report 5, Pavement Research," <u>Special Report 61E</u>, 1962.
- 71. Highway Research Board, "The AASHO Road Test: Report 6, Special Studies," Special Report 61F, 1962.
- 72. Highway Research Board, "The AASHO Road Test: Report 7, Summary Report," Special Report 61G, 1962.
- 73. Highway Research Board, "The AASHO Test History and Description of Project," Special Report 61A, 1961.
- 74. Highway Research Board, "The WASHO Road Test, Part 1, Design, Construction, and Testing Procedure," <u>Special Report 18</u>, 1954.
- 75. Hong, H., "State of the Art Theory and Application of Sonic Testing for Bituminous Mixtures," <u>Special Report 94</u>, Highway Research Board, 1968.
- 76. Howkins, S. D., 'Measurement of Pavement Thickness by Rapid and Nondestructive Methods," NCHRP Report 52, Highway Research Board, 1968.
- 77. Hudson, W. R., "Discontinuous Orthotropic Plates and Pavement Slabs," Ph.D. Dissertation, The University of Texas, Austin, August 1965.
- 78. Hudson, W. R., F. N. Finn, B. F. McCullough, K. Nair, and B. A. Vallerga, "Systems Approach to Pavement Design," Interim Report NCHRP Project 1-10, submitted to National Cooperative Highway Research Program, Highway Research Board, March 1968.

- 79. Hudson, W. R., and B. F. McCullough, "An Extension of Rigid Pavement Design Methods," <u>Highway Research Record No. 60</u>, Highway Research Board, 1963.
- Hudson, W. R., B. F. McCullough, and Fred N. Finn, "Factors Affecting Performance of Pavement Systems," <u>Transportation Engineering Journal</u>, Vol 95, No. TE3, American Society of Civil Engineers, August 1969.
- 81. Hudson, W. Ronald, B. Frank McCullough, F. H. Scrivner, and James L. Brown, "A Systems Approach Applied to Pavement Design and Research," Research Report 123-1, Center for Highway Research, The University of Texas at Austin, March 1970.
- 82. Hutchinson, B. G., and R. C. G. Haas, "A System Analysis of the Pavement Design Process," <u>Highway Research Record No. 239</u>, Highway Research Board, 1968.
- 83. Hveem, F. N., "Devices for Recording and Evaluating Pavement Roughness," Bulletin 264, Highway Research Board, 1960.
- 84. Hveem, F. N., "Pavement Deflections and Fatigue Failures in Design and Testing of Flexible Pavements," <u>Bulletin 114</u>, Highway Research Board, 1955.
- 85. Hveem, F. N., "Types and Causes of Failure in Highway Pavements," Bulletin 187, Highway Research Board, 1958, pp 1-52.
- 86. Hveem, F. N., and R. M. Carmany, "Factors Underlying the Rational Design of Pavements," Proceedings, Vol 28, Highway Research Board, 1948.
- 87. Hveem, F. N., Earnest Zube, Robert Bridges, and Raymond Forsyth, "The Effect of Resilience-Deflection Relationship on the Structural Design of Asphaltic Pavements," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 649-666.
- 88. Irick, P. E., "An Introduction to Guidelines for Satellite Studies of Pavement Performance," NCHRP Report 2, Highway Research Board, 1964.
- 89. Jain, S. P., "Significance of Different Variables in FPS-7," Research Report, Center for Highway Research, The University of Texas at Austin, in progress.
- 90. Jain, S. P., "Application of Traffic Data of Texas Highway Department to Determine the Load Distribution Factor," Technical Memorandum 123-01, Center for Highway Research, The University of Texas at Austin, November 1969.
- 91. Jain, S. P., "Effect on Value of the Modulus of the Subgrade Reaction (K) Due to Variations in Soil Support or Erodability," Technical Memorandum 123-04, Center for Highway Research, The University of Texas at Austin, April 1970.

- 92. Jain, S. P., "Rating of the Variables in FPS-2," Technical Memorandum 123-07, Center for Highway Research, The University of Texas at Austin, July 1970.
- 93. Jain, S. P., "Sensitivity Analysis on FPS-6 (AASHO Model)," Technical Memorandum 123-08, Center for Highway Research, The University of Texas at Austin, July 1970.
- 94. Jain, S. P., "An Extension of AASHO Flexible Design Method," Technical Memorandum 123-11, Center for Highway Research, The University of Texas at Austin, November 1970.
- 95. Jimenez, R. A., and B. M. Gallaway, "Behavior of Asphalt Concrete Diaphragms to Repetitive Loading," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, University of Michigan, 1963.
- 96. Jones, A., "Tables of Stresses in Three-Layer Elastic Systems," <u>Bulletin</u> <u>342</u>, Highway Research Board, 1962, pp 176-215.
- 97. Jones, R., and E. N. Gatfield, "Fatigue Effects in Concrete Under Vibratory Stress," Research Note No. RN/3891/RJ. ENG., Department of Scientific and Industrial Research, Road Research Laboratory, January 1961.
- 98. Kang, Nai C., "Systems of Pavement Design and Analysis," <u>Highway Research</u> Record No. 239, Highway Research Board, 1968.
- 99. Kaplan, M. F., "Strains and Stresses of Concrete at Initiation of Cracking and Near Failure," <u>Journal of the American Concrete Institute</u>, July 1963.
- 100. Kasianchuk, D. C., "Fatigue Consideration in the Design of Asphalt Concrete Pavement," Ph.D. Dissertation, University of California at Berkeley, August 1968.
- 101. Kelley, James A., "Quality Assurance in Highway Construction, Part 5, Summary of Research for Quality Assurance Aggregate," <u>Public Roads</u>, Vol 35, No. 10, October 1969, pp 230-237.
- 102. Kersten, M. S., and Eugene L. Skok, "Application of AASHO Road Test Results to Design of Flexible Pavement in Minnesota," Investigation Number 183 - Interim Report, Minnesota Department of Highways, 1968.
- 103. Kesler, Clyde E., "Effect of Speed of Testing on Flexural Fatigue Strength of Plain Concrete," <u>Proceedings</u>, Vol 32, Highway Research Board, 1953, pp 251-258.
- 104. Kher, Ramesh K., and W. R. Hudson, "A Systems Analysis of Rigid Pavement Design," Research Report 123-5, Center for Highway Research, The University of Texas at Austin, September 1970.

- 105. Kirk, J. M., "Analysis of Deflection Data From the AASHO Test," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 151-154.
- 106. Klomp, A. J. G., and T. H. W. Niesman, "Observed and Calculated Strains at Various Depths in Asphalt Pavements," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 671-688.
- 107. Kondner, Robert L., and Raymond J. Krizer, "Factors Influencing Flexible Pavement Performance," NCHRP Report 22, Highway Research Board, 1966.
- 108. Kriege, H. F., and L. C. Gilbert, "Some Factors Affecting the Resistance of Bituminous Mixtures to Deformation Under Moving Wheel Loads," <u>Proceedings of the Association of Asphalt Paving Technologists</u>, 1933, pp 73-84.
- 109. Kung, Kuang-Yuan, "A New Method in Correlation Study of Pavement Deflection and Cracking," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 1037-1046.
- 110. Lazan, B. J., and A. Yorgiadis, "The Behavior of Plastics Under Repeated Stress," <u>Symposium on Plastics</u>, <u>STP No. 59</u>, American Society for Testing Materials, Philadelphia, 1944, pp 66-94.
- 111. Lewis, W. C., "Fatigue of Wood and Glued-Wood Constructions," <u>Proceedings</u>, Vol 46, American Society for Testing Materials, 1946, pp 814-835.
- 112. Lister, N. W., and R. Jones, "The Behavior of Flexible Pavements Under Moving Wheel Loads," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 1021-1036.
- 113. Lytton, R. L., "A Method of Decreasing the Computer Running Time for FPS," Technical Memorandum, Texas Transportation Institute, Texas A&M University, College Station, Texas, July 13, 1971.
- 114. Marco, S. M., and W. L. Starkey, "A Concept of Fatigue Damage," <u>Transac-</u> <u>tions</u>, Vol 76, American Society of Mechanical Engineers, 1954, pp 627-632.
- 115. McCall, John T., "Probability of Fatigue Failure of Plain Concrete," Journal of the American Concrete Institute, Vol 30, No. 2, August 1958.
- 116. McCullough, B. F., "A Pavement Overlay Design System Considering Wheel Loads, Temperature Changes, and Performance," Ph.D. Dissertation, University of California at Berkeley, July 1969.

- 117. McCullough, B. F., C. J. Vantil, B. A. Vallerga, and R. G. Hicks, "Evaluation of AASHO Interim Guide for Design of Pavement Structures," NCHRP Project 1-11, submitted to National Cooperative Highway Research Program, Highway Research Board, December 1968.
- 118. Metcalf, C T., "Field Measurement of Dynamic Elastic Moduli of Materials in Flexible Pavement Structures," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 521-536.
- 119. Miner, Milton A., "Estimation of Fatigue Life with Particular Emphasis on Cumulative Damage," <u>Metal Fatigue</u>, George Sines and J. L. Waisman, editors, McGraw-Hill Book Company, Inc., New York, 1959, pp 278-289.
- 120. Miner, Milton A., "Cumulative Damage in Fatigue," <u>Transactions</u>, Vol 66, American Society of Mechanical Engineers, 1945, pp A159-A164.
- 121. Monismith, Carl L., "Asphalt Paving Mixtures, Properties, Design and Performance," course notes, The Institute of Transportation and Traffic Engineering, University of California at Berkeley, 1961.
- 122. Monismith, C. L., "Flexibility Characteristics of Asphaltic Paving Mixtures," <u>Proceedings of the Association of Asphalt Paving Technol-</u> ogists, Vol 27, 1958, pp 74-106.

- 123. Monismith, C. L., "Effect of Temperature on the Flexibility Characteristics of Asphaltic Paving Mixtures," <u>Symposium on Road and Paving</u> <u>Materials, STP No. 277</u>, American Society for Testing Materials, Philadelphia, 1960, pp 89-108.
- 124. Monismith, C. L., "Asphalt Mixture Behavior in Repeated Flexure," Report No. TE-63-2, Institute of Engineering Research, University of California at Berkeley, November 1963.
- 125. Monismith, C. L., "Symposium on Flexible Pavement Behavior as Related to Deflection, Part II - Significance of Pavement Deflections," <u>Proceedings of the Association of Asphalt Paving Technologists</u>, Vol 31, 1962, pp 231-260.
- 126. Monismith, C. L., and J. A. Deacon, "Fatigue of Asphalt Paving Mixtures," <u>Transportation Engineering Journal of ASCE</u>, Vol 95, No. TE2, May 1969.
- 127. Monismith, C. L., and K. E. Secor, "Thixotropic Characteristics of Asphaltic Paving Mixtures with Reference to Behavior in Repeated Loading," <u>Proceedings of the Association of Asphalt Paving Technol-ogists</u>, Vol 29, 1960, pp 114-140.
- 128. Monismith, C. L., H. B. Seed, F. G. Mitry, and C. K. Chan, "Prediction of Pavement Deflections from Laboratory Tests," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 109-141.

- 129. Monismith, C. L., K. E. Secor, and E. W. Blackmer, "Asphalt Mixture Behavior in Repeated Flexure," <u>Proceedings of the Association of</u> <u>Asphalt Paving Technologists</u>, Vol 30, 1961, pp 188-222.
- 130. Monismith, C. L., D. A. Kasianchuk, and J. A. Epps, "Asphalt Mixture Behavior in Repeated Flexure: A Study of an In-Service Pavement Near Morro Bay, California," Report No. TE 67-4, University of California, Berkeley, December 1967.
- 131. Morgan, J. R., and A. J. Scala, "Flexible Pavement Behavior and Application of Elastic Theory: A Review," Australian Road Research Board Fourth Conference, 1968.
- 132. Murdock, John W., "A Critical Review of Research on Fatigue," <u>Bulletin</u> <u>475</u>, Engineering Experiment Station, College of Engineering, University of Illinois, 1965.
- 133. Nichols, F. P., "A Practical Approach to Flexible Pavement Design," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 769-780.
- 134. Nielsen, J. P., "Implications of Using Layered Theory in Pavement Design," Transportation Engineering Journal of ASCE, Vol 96, No. TE4, 1970.

- 135. Nijboer, L. W., "Mechanical Properties of Asphalt Materials and Structural Design of Asphalt Roads," <u>Proceedings</u>, Vol 33, Highway Research Board, 1954.
- 136. Nijboer, L. W., 'Mechanical Properties of Bituminous Road Mixtures," <u>Proceedings of the Symposium on Vibration Testing of Roads and</u> <u>Runways</u>, Koninklijke/Shell-Laboratorium, Amsterdam, April 20-24, 1959.
- 137. Nijboer, L. W., and C. T. Metcalf, "Dynamic Testing at the AASHO Road Test," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 713-721.
- 138. Nordby, Gene M., "Fatigue of Concrete A Review of Research," presented at the ACI 54th Annual Convention, from a symposium sponsored by ACI Committee 215, Chicago, Illinois, February 26, 1958.
- 139. Painter, L. J., "Analysis of AASHO Road Test Asphalt Pavement Data by the Asphalt Institute," <u>Highway Research Record No. 71</u>, Highway Research Board, 1965.
- 140. Palmer, L. A., and E. S. Barber, "Soil Displacement Under a Circular Loaded Area," <u>Proceedings</u>, Vol 20, Highway Research Board, 1940, pp 279-286.
- 141. Papazian, H. S., and R. F. Baker, "Analysis of Fatigue Type Properties of Bituminous Concrete," <u>Proceedings of the Association of Asphalt</u> <u>Paving Technologists</u>, Vol 28, 1959, pp 179-210.

- 142. Paris, P. C., M. P. Gomez, and W. E. Anderson, "A Rational Analytic Theory of Fatigue," <u>The Trend in Engineering</u>, Vol 13, No. 1, January 1961, pp 9-14.
- 143. Pavement Design and Evaluation Committee, "Field Performance Studies of Flexible Pavements," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 1087-1101.
- 144. Peattie, K. R., "Stress and Strain Factors for Three-Layered Elastic Systems," <u>Bulletin 342</u>, Highway Research Board, 1962, pp 215-252.
- 145. Peattie, K. R., "A Fundamental Approach to the Design of Flexible Pavements," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 403-411.
- 146. Pell, P. S., "Fatigue of Asphalt Pavement Mixes," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- 147. Pell, P. S., "Fatigue Characteristics of Bitumen and Bituminous Mixes," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963.
- 148. Pell, P. S., "Fatigue of Bituminous Materials in Flexible Pavements," <u>Proceedings</u>, Vol 31, Institute of Civil Engineering, 1965.

- 149. Pell, P. S., P. F. McCarthy, and R. R. Gardner, "Fatigue of Bitumen and Bituminous Mixes," <u>International Journal of Mechanical Sciences</u>, Vol 3, 1961, pp 247-267.
- 150. Pister, K. S., and R. A. Westmann, "Analysis of Viscoelastic Pavements Subjected to Moving Loads," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 522-529.
- 151. Porter, O. J., "Foundations for Flexible Pavements," <u>Proceedings</u>, Vol 22, Highway Research Board, 1942, pp 100-143.
- 152. Plunkett, Robert, "Statistical Analysis of Fatigue Data," <u>Symposium on</u> <u>Statistical Aspects of Fatigue</u>, <u>STP No. 121</u>, American Society for Testing Materials, Philadelphia, 1951, pp 45-53.
- 153. Richmond, Samuel B., <u>Statistical Analysis</u>, Second Edition, the Ronald Press Company, New York, January 1964.
- 154. Road Research Laboratory, "Bituminous Materials in Road Construction," Her Majesty's Stationery Office, London, 1962.
- 155. Roberts, Freddy L., "Pavement Serviceability Equation Using the Surface Dynamics Profilometer," <u>Special Report 116</u>, Highway Research Board, 1971.

- 156. Saal, R. N. J., and P. S. Pell, "Fatigue of Bituminous Road Mixes," Kolloid Zeitschrift (Darmstadt), Vol 171, 1960.
- 157. Saal, R. N. J., and P. S. Pell, "Fatigue Characteristics of Bituminous Road Mixes," British Society of Rheology, 1959.
- 158. Scrivner, F. H., and Chester H. Michalak, "Flexible Pavement Performance Related to Deflections, Axle Applications, Temperature, and Foundation Movements," Research Report 32-13, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1969.
- 159. Scrivner, F. H., and W. M. Moore, "An Empirical Equation for Predicting Pavement Deflections," Research Report 32-12, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1968.
- 160. Scrivner, F. H., and W. M. Moore, "Some Recent Findings in Flexible Pavement Research," Research Report 32-9, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1967.
- 161. Scrivner, F. H., and W. M. Moore, "An Electro-Mechanical System for Measuring the Dynamic Deflection of a Road Surface Caused by an Oscillating Load," Research Report 32-4, Texas Highway Department -Texas Transportation Institute Cooperative Research, December 1964.
- 162. Scrivner, F. H., W. M. Moore, and G. R. Carey, "A Systems Approach to the Flexible Pavement Design Problem," Research Report 32-11, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1968.
- 163. Sebastyan, G. Y., "Pavement Deflection and Rebound Measurements and Their Application to Pavement Design and Evaluation," <u>Proceedings of the</u> <u>Association of Asphalt Paving Technologists</u>, Vol 32, 1962.
- 164. Seed, H. B., F. G. Mitry, C. L. Monismith, and C. K. Chan, "Prediction of Flexible Pavement Deflection from Laboratory Repeated-Load Test," NCHRP Report 35, Highway Research Board, 1967.
- 165. Seed, H. B., C. K. Chan, and C. E. Lee, "Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 611-636.
- 166. Shahin, M. Y., "Two Layered Systems Analyses," unpublished term project for CE 391.Pl, The University of Texas at Austin, 1971.
- 167. Shahin, Mohammed Y., "Outlines of Computer Program Available for Analyses of Stresses and Strains, and Displacement in a Five Layered Elastic System Under a Load Uniformly Distributed on a Circular Area," Technical Memorandum, Center for Highway Research, October 13, 1970.
- 168. Shook, James F., and H. Y. Fang, "Cooperative Materials Testing Program at the AASHO Road Test," <u>Special Report 66</u>, Highway Research Board, 1961.

- 169. Skok, Eugene L., Jr., and Fred N. Finn, "Theoretical Concepts Applied to Asphalt Concrete Pavement Design," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1963, pp 412-440.
- 170. <u>Standard Specifications of Road and Bridge Construction</u>, Texas Highway Department, January 2, 1962.
- 171. Sutaria, T. C., "Sensitivity of Various Parameters in Cracking-Index Program," unpublished term project for CE 391P.L, The University of Texas at Austin, 1971.
- 172. <u>Symposium on Fatigue with Emphasis on Statistical Approach, II</u>, <u>STP No.</u> <u>137</u>, American Society for Testing Materials, Philadelphia, 1953.
- 173. Takeshita, H., "Considerations on the Structural Number," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968, pp 407-412.
- 174. Teller, W., <u>An Introduction to Probability Theory and Its Applications</u>, John Wiley & Sons, Inc., New York, 1961.
- 175. Texas Highway Department, <u>Flexible Pavement Designer's Manual, Part I</u>, March 1970.

1 %

- 176. Texas Highway Department, "Triaxial Compression Test for Disturbed Soils and Base Materials," <u>Manual of Testing Procedures</u>, Vol 1, Tex-1171E, Revised Edition, September 1965.
- 177. Thenn de Barros, S., "A Critical Review of Present Knowledge of the Problem of Rational Thickness Design of Flexible Pavements," Highway Research Record No. 71, Highway Research Board, 1965.
- 178. Thomas, T. W., "The Testing of Asphalt Paving Specimens Upon a Flexible Spring Base," <u>Proceedings of the Association of Asphalt Paving</u> Technologists, Vol 17, 1948, pp 174-183.
- 179. Timoshenko, S., <u>Theory of Elasticity</u>, McGraw-Hill Company, Inc., New York, 1934.
- 180. Vallerga, B. A., "On Asphalt Pavement Performance," <u>Proceedings of the</u> <u>Association of Asphalt Paving Technologists</u>, Vol 24, 1955, pp 79-102.
- 181. Vallerga, B. A., F. N. Finn, and R. G. Hicks, "Effect of Asphalt Aging on the Fatigue Properties of Asphalt Concrete," Second International Conference on the Structural Design of Asphalt Pavements, August 1967, Braun-Brumfield, Inc., Ann Arbor, Michigan, 1968.
- 182. Van der Poel, C., "A General System Describing the Viscoelastic Properties of Bitumen and Its Relation to Routine Test Data," <u>Journal of Applied</u> Chemistry, May 4, 1954.

- 183. Vesic, Aleksander S., William H. Perloff, and Carl L. Monismith, editors, "Review of Existing Theories and Methods of Pavement Design," <u>Circular Number</u> 112, Highway Research Board, October 1970.
- 184. Vesic, Aleksander Sedmak, and Leonard Domaschuk, "Theoretical Analysis of Structural Behavior of Road Test Flexible Pavements," NCHRP Report 10, Highway Research Board, 1964.
- 185. Walker, Roger S., Freddy L. Roberts, and W. Ronald Hudson, "A Profile Measuring, Recording, and Processing System," Research Report No. 73-2, Center for Highway Research, The University of Texas at Austin, April 1970.
- 186. Weibull, W., <u>Fatigue Testing and Analysis of Results</u>, Pergamon Press, New York, 1961.
- 187. Witt, Arthur W., III, and B. Frank McCullough, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," Research Report No. 123-3, Center for Highway Research, The University of Texas at Austin, August 1970.
- 188. Yoder, E. J., <u>Principles of Pavement Design</u>, John Wiley & Sons, Inc., New York, 1959.
- 189. Zimpfer, W. H., T. L. Bransford, and William Gartner, Jr., "A Tentative Flexible Pavement Design Method for the State of Florida," <u>Research</u> <u>Bulletin No. 22-A</u>, Division of Research and In-Service Training, State Road Department of Florida, January 1960.
- 190. Zube, Ernest, and Raymond Forsyth, "Flexible Pavement Maintenance Requirements as Determined by Deflection Measurements," <u>Highway Research</u> Record No. 129, Highway Research Board, 1966.

# APPENDIX 1

SUMMARY OF RESEARCH NEEDS, ADVISORY COMMITTEE, HRB WORKSHOP ON STRUCTURAL DESIGN OF ASPHALT CONCRETE PAVEMENT SYSTEMS HELD IN AUSTIN, TEXAS, DECEMBER 7-10, 1970 (REF 63)

# APPENDIX 1. SUMMARY OF RESEARCH NEEDS, ADVISORY COMMITTEE, HRB WORKSHOP ON STRUCTURAL DESIGN OF ASPHALT CONCRETE PAVEMENT SYSTEMS HELD IN AUSTIN, TEXAS, DECEMBER 7-10, 1970 (REF 63)

To make engineers more effective in bringing developments to the profession quickly and in helping to direct research efforts by improving the interaction between engineers and researchers, a workshop was held at The University of Texas during the period December 7-10, 1970, under the auspices of the Highway Research Board and sponsored by the Federal Highway Administration.

The following list represents ten major research items required to develop additional methodology for problems currently not solvable. These items have been obtained from the deliberations of the nine discussion groups and have been ranked by the Advisory Committee (Ref 63). This committee has prepared statements which reflect the extent of these research areas.

It should be noted that there are many items included in the discussion group reports which have not been included in this listing.

1. <u>Relationship Between Pavement Distress and a Performance or Failure</u> <u>Function</u>

There is no mechanistic way to relate pavement distress to pavement failure except for specific conditions (e.g., excess of rutting levels related to safety).

2. <u>Determine Applicability of Linear Theories to Predict Stress, Strain</u>, Deflections and Fatigue Distress in Pavements

This research is intended to determine how accurately the linear theories of elasticity and viscoelasticity (applied to layered systems) can predict the stress and strain states, and surface deflections. The predicted stress and/or strain state in conjunction with fatigue data is to be used to estimate the cracking of pavements subjected to repeated loads. In addition the viscoelasticity theory is to be used to predict surface rutting. In all cases the predictions will be compared with closely controlled and thoroughly instrumented laboratory and field experiments.

#### 3. Mechanical Characterization of Granular Materials

Although unbonded granular materials have been used as components of pavements for many years, there are as yet no generally accepted constitutive equations by which they may be represented in the stress analysis or which will reflect their cumulative deformation under repeated loadings. Sensitivity to confining pressure, the modification of response due to various degrees of saturation, the "conditioning" which occurs under early applications of load, and the cumulative densification or distortion which is produced by many cycles of load well below failure levels, must be considered. Relationships which approximate these effects under the three dimensional states of stress typical of those occurring in pavement systems are required. Since rigorous representation is not immediately attainable, the emphasis should be placed on the permissible deviations from linear viscoelastic systems which are tractable in analysis. After acceptable parameters are selected to characterize such materials, test procedures must be developed for use by engineers on a production basis which permit measurement of these parameters on granular materials in a state representative of their in-situ condition in the pavement system.

# 4. Effect of Environment on Pavement System Condition and Response

To provide the ability to predict the equilibrium conditions which will prevail in a given pavement system under local moisture and temperature environments and the effects of these conditions on materials' properties, differential surface deformations, and pavement performance.

### 5. Treating Pavement Design as a Stochastic Process

A procedure needs to be developed which will predict variations in the system response due to statistical variations in load, environment, geometry, and material properties. In addition, an error analysis is required to estimate the variations in the predictions arising from inaccuracy of the analytical model and inconsistency in testing procedures.

This would provide the designer with the ability to evaluate the risk involved in arriving at a particular design value by the selection of various assumed values for parameters based on statistical considerations.

## 6. Fracture Mechanisms

The mechanistic approach to fatigue-crack prediction utilizes fracturemechanics principles to explain the initiation, propagation, and accumulation of cracks. It offers many potential advantages as compared with the phenomenological approach primarily in terms of its ability to handle both mode of loading and areal cracking as well as in terms of its ability to explicitly treat the stochastic nature of the process. Following the successful completion of current research programs, additional research that is anticipated includes the effects of random loading, the phenomenon of localized plastic flow due to occasional heavy loadings, and continuing field verification.

7. <u>Mechanical Characterization of Pavement Materials (Other than Granu-</u> lar)

While considerable progress has been made in the identification and measurement of properties of asphaltic concrete required for insertion into the linear viscoelastic and other procedures of stress analysis, there still remain important questions in the characterization of these materials and of asphalt-treated base materials, cement-treated base materials, and cohesive soils. In all cases, the degree of departure of these materials from the linear response model must be determined to identify any deviations large enough to require special analysis. Further, the deformation and fracture response of these materials to repeated loading under states of stress representative of critical states in pavement systems must be determined. The effects of the environmental variables of temperature and moisture, where appropriate, must be evaluated. After appropriate characterizations are obtained, production type tests capable of use by highway engineers must be developed, and typical ranges of values determined.

8. Identification of Loading

(a) Determine accuracy of weight and volume data presently being obtained and reported in the W-4 loadometer tables by extending the studies.

(b) Gather data to check accuracy of past predictions of design loadings.

# 9. <u>Reflection Cracking - Method of Prediction</u>

Current systems of overlay design do not provide adequate guidance in designing overlays to prevent reflection cracking. This is particularly true in the case of large random or thermal cracks found in older Portland Cement Concrete or cement-treated base structures. In addition, current design methods do not recognize that cracking can initiate in the base course due to
shrinkage or other environmental changes. Such a crack can then reflect through the surface layer leading to distress.

It is believed that the possibility of developing a mechanistic model should be explored with the purpose of providing a rational approach to these design problems.

With portions of the Interstate as well as other Federal and State Highways approaching the end of their structural design life, it is important that work on the problem be started at an early date so that it will be available to help in the designs which will be facing the states in the next few years.

#### 10. Information Data Base for the Pavement System

Development of rational pavement design methods is an iterative process which involves observation and subsequent improvement bases on analysis of observed data. Validation or modification of system and sub-system models lends emphasis to the need for selecting of proper variables and compatible ways of measurement. The numbers of the possible candidates for inclusion in the system requires that effective information management techniques be applied to the data handling process. This involves; selection of parameters to be stored, sampling plan (i.e., how, when, where to take data), data processing, input, storage, and output techniques. The pilot model of such a system probably involves selected pavement sections rather than an entire pavement inventory.

Service-Performance Measurements, or subjective ratings, must be used to bridge this gap and thus to establish a way of defining pavement failure and unserviceability for combined levels of distress in terms of the pavement function and the user.

Studies must define important distress factors involved in pavement failure (including weighting functions for these factors) in terms of time, traffic, or other usable factors. Concepts of "value", such as Utility Theory, should be studied to see if such work can be applied to this function.

A crude estimate of man-years necessary to accomplish bringing research needs to the true implementation state was compiled by the Advisory Committee. There was not time to make any considered judgments, therefore these should only be viewed as an expression of magnitude. 1. 10-50 2. 10 3. 12 4. 10 5. 5 6. 10 7. 12 8. 2 9. 5 10. 5-50

.

•

•

.

APPENDIX 2

## DETAILS OF MATERIAL CHARACTERIZATION

#### APPENDIX 2. DETAILS OF MATERIAL CHARACTERIZATION

#### Introduction

The need for and technical aspect of the material characterization along with the details of the material properties required for the present flexible pavement design procedure were discussed in Chapter 5. Consolidated statements on the properties of the AASHO Road Test materials which were adopted for the present analysis were also included in Chapter 5. Details of the procedure to characterize these material properties which were not included in Chapter 5 are given in this appendix.

#### Elastic Modulus

The elastic modulus is one of the most important material properties to be considered in the proposed fatigue model. Its determination should be based on a close simulation of expected field conditions. The computations required for such a determination are given in the following paragraphs.

<u>Asphalt Concrete</u>. Various parameters and mix properties required for determination of the stiffness modulus of asphalt concrete are listed in Chapter 5. The procedure to determine these parameters is detailed below.

<u>Monthly Temperature</u>. For the present design procedure, to determine the monthly values of stiffness modulus of asphalt concrete, a temperature representative of each month is required. This can be obtained from weather data. For the present analysis, this information (Table A2.1) was obtained from the AASHO Road Test Report 5 (Ref 70).

<u>Time of Loading</u>. Several axle loads were used in the AASHO Road Test. The axle load as well as the tire pressures in each case was different. However, a constant speed of 35 miles an hour was maintained for the test traffic (Ref 70). Time of loading is required to calculate suitable values of the stiffness modulus for asphalt concrete. For this report, an average time of loading was calculated as shown in Table A2.2, which is self-explanatory. On this basis, a mean value of 0.02 seconds was adopted for all calculations.

## TABLE A2.1. MONTHLY TEMPERATURES

.

| Month     | Temperature, | ° <u>F</u> |
|-----------|--------------|------------|
| January   | 21           |            |
| February  | 25           |            |
| March     | 27           |            |
| April     | 41           |            |
| May       | 54           |            |
| June      | 66           |            |
| July      | 70           |            |
| August    | 75           |            |
| September | 65           |            |
| October   | 51           |            |
| November  | 43           |            |
| December  | 28           |            |
|           |              |            |

.

<u>Mix Properties</u>. The following average values were adopted from the AASHO Road Test Report 2, SR61B (Ref 67):

| 117 <sup>0</sup> F                    |
|---------------------------------------|
| 91                                    |
| 3-5%                                  |
| 5.4% based on total weight of mixture |
| 146.8 lbs per cu ft                   |
|                                       |

From the above data,

Ag.

Volume concentration 
$$C_v = \frac{Volume \text{ of compacted aggregate}}{Volume \text{ of aggregate + asphalt}}$$

Volume of asphalt per cu ft =  $\frac{146.8 \times 5.4}{100 \times 62.4}$  = 0.127 cu ft

(assuming specific gravity of asphalt as unity).

$$C_v = \frac{1}{1+0.127} = 0.89$$

Making Van Draat and Sommer corrections for voids of more than 3 percent (Ref 38),

Corrected volume concentration 
$$C'_v = \frac{C_v}{1 + \Delta H}$$

△H = difference between actual air void content and the value of 3 percent (expressed in decimal form)

$$C_{v}' = \frac{C_{v}}{1 + \Delta H} = \frac{0.89}{1 + \frac{5 - 3}{100}} = 0.87$$

$$\frac{C'_{v}}{1 - C'_{v}} = 6.7$$

From PI charts (Ref 121), assume PI = 0.

Time of loading from Table A2.2 = 0.02 seconds.

<u>Values of Stiffness Modulus</u>. Values of the stiffness modulus of asphaltic concrete were calculated by the Heukelom and Klomp (Table A2.3), and the Nijboer method (Table A2.4).

Table A2.5 gives a consolidated statement of the stiffness values calculated by the above two methods at various temperatures. Columns 5 to 9 in this table give the stiffness values of asphalt concrete adopted in various references. Column 10 gives the practical observation values of stiffness in a pavement at various temperatures from a plot reported in Highway Research Record No. 71, pp 70-73. This plot was developed by use of the results of subgrade stress measurements at different pavement temperature. It may be observed that the values of stiffness calculated by Nijboer are very low as compared to the Heukelom and Klomp method. The literature review shows that the Heukelom and Klomp method has been given enough recognition to make the results based on this method more reliable, although it has been observed (Ref 42) that this method tends to give higher values. The Nijboer method has not been used much. To get a reasonable value of stiffness consistent with the values in Column 10, the following criteria were adopted for the present analysis.

- A weighted average stiffness value was calculated at all temperatures by weighting the Heukelom and Klomp method, twice as compared to the Nijboer method.
- (2) After the stiffness values were recalculated by the method in the preceeding paragraph, it was found that values agreed reasonably well with Column 10 except at high temperatures. At a temperature of 77° F the values given by the Nijboer method as well as by the Heukelom and Klomp method are lower than the values of Columns 5 to 10 obtained at this temperature from the indicated references. Therefore, to get a consistent value, an average of all the values in Cols 5 to 10 was taken and this value was assumed reasonable.

Based on paragraphs (1) and (2) above, a plot was made as shown in Fig A2.1 to represent the stiffness values of asphalt concrete of the AASHO Road Test. The monthly temperature values (Table A2.1) for the present analysis are taken from AASHO Road Test Report 5 (Ref 70). The monthly temperature and stiffness modulus thus obtained are tabulated in Table A2.6.

Untreated Granular Base and Subbase Materials. Monthly values of the resilient modulus for these AASHO Road Test materials are not available. However, proper analysis of the existing data could give the desired information.

| Wheel Load,<br>1b | Tire<br>Pressure,<br>1b/in <sup>2</sup> | Contact<br>Area,<br>in <sup>2</sup> | ontact Diameter of<br>Area, Contact Area,<br>in <sup>2</sup> in. |       |  |  |
|-------------------|-----------------------------------------|-------------------------------------|------------------------------------------------------------------|-------|--|--|
| 1,000             | 29.1                                    | 34.4                                | 6.6                                                              | .0107 |  |  |
| 3,000             | 42.3                                    | 71.0                                | 9.5                                                              | .0162 |  |  |
| 6,000             | 65.7                                    | 91.5                                | 10.8                                                             | .0175 |  |  |
| 6,000             | 65.7                                    | 91.5                                | 10.8                                                             | .0175 |  |  |
| 9,000             | 67.5                                    | 133.3                               | 13.0                                                             | .0210 |  |  |
| 8,000             | 69.5                                    | 115.0                               | 12.1                                                             | .0196 |  |  |
| 11,200            | 66.4                                    | 169.9                               | 14.7                                                             | .0240 |  |  |
| 10,000            | 66.4                                    | 151.0                               | 13.9                                                             | .0225 |  |  |
| 15,000            | 69.7                                    | 216.0                               | 16.6                                                             | .0270 |  |  |
| 12,000            | 69.8                                    | 172.0                               | 14.8                                                             | .0240 |  |  |
|                   |                                         | <b></b>                             | MEAN                                                             | 0.02  |  |  |

Average Adopted Time of Loading = 0.02 seconds

•

Speed of Vehicles at AASHO Road Test = 35 mph = 51.3 fps

## TABLE A2.3. CALCULATION OF MONTHLY STIFFNESS MODULUS OF AASHO ASPHALT CONCRETE BY HEUKELUM & KLOMP METHOD REF NCHRP REPORT 39 (Ref 42)

...

4

• • • •

|                     | Temp Be        | low R&B | Stiffness of       | $n^{=}$      | $\frac{S_{m}}{S_{b}} = \left(1 + \frac{2.5}{n}\right)$ | $\frac{cv'}{1-cv'}\right)^n = X^n$ | Stiffness of       |                                         |
|---------------------|----------------|---------|--------------------|--------------|--------------------------------------------------------|------------------------------------|--------------------|-----------------------------------------|
| Temp <sup>O</sup> F | ο <sub>F</sub> | °c      | kg/cm <sup>2</sup> | 0.83 × log S | X                                                      | X <sup>n</sup>                     | kg/cm <sup>2</sup> | S <sub>m</sub><br>psi x 10 <sup>5</sup> |
| 1                   | 2              | 3       | 4                  | 5            | 6                                                      | 7                                  | 8                  | 9                                       |
| 20                  | 97             | 54      | 2000               | 1.91         | 9.75                                                   | 77.5                               | 155000             | 22.1                                    |
| 23                  | 94             | 52      | 1600               | 1.95         | 9.6                                                    | 82.3                               | 131680             | 18.8                                    |
| 29                  | 88             | 49      | 1200               | 2.08         | 9.0                                                    | 96.7                               | 116040             | 16.6                                    |
| 41                  | 76             | 42      | 500                | 2.41         | 7.9                                                    | 146.0                              | 73000              | 10.5                                    |
| 52                  | 65             | 36      | 300                | 2.59         | 7.5                                                    | 184.0                              | 55200              | 8.0                                     |
| 64                  | 53             | 29      | 100                | 2.95         | 6.6                                                    | 285.0                              | 28500              | 4.0                                     |
| 67                  | 50             | 28      | 90                 | 3.03         | 6.5                                                    | 290.0                              | 26100              | 3.7                                     |
| 71                  | 46             | 26      | 60                 | 3.18         | 6.3                                                    | 348.0                              | 20880              | 3.0                                     |
| 74                  | 43             | 24      | 50                 | 3.24         | 6.2                                                    | 370.0                              | 18500              | 2.6                                     |
| 75                  | 42             | 23      | 40                 | 3.32         | 6.0                                                    | 383.0                              | 15320              | 2.2                                     |

211

. 7

· ·

## TABLE A2.4. CALCULATION OF MONTHLY STIFFNESS MODULUS VALUES OF AASHO ASPHALT CONCRETE BY THE NIJOBOER METHOD (Ref 173)

$$E_{60} = 16 \frac{P}{f}$$

where

- $E_{60}$  = modulus of deformation (kg/cu<sup>2</sup>) at 60<sup>°</sup> C and time of loading of 5 sec,
- p = Marshall stability (kg) of mix,
- f = flow value (unit 1/100 cm).

For AASHO asphalt concrete p = 900 kg

$$f = 28$$

$$E_{60} = 16 \frac{p}{f} \approx 16 \times \frac{900}{28} = 514 \text{ kg/cu}^2$$

Coefficient for 0.02 time of loading = 4.0 Hence  $E_{60}$ ,t = 0.02 = 514 × 4.0 = 2056 kg/cu<sup>2</sup> = 29362 lbs/sq in.

| Temp. F | Temp. <sup>O</sup> C | Coefficient | E lbs/sq in. $\times 10^5$ |
|---------|----------------------|-------------|----------------------------|
| 1       | 2                    | 3           | 4                          |
| 20      | -6.7                 | 19          | 5.6                        |
| 23      | -5.0                 | 18          | 5.3                        |
| 29      | -1.7                 | 16          | 4.7                        |
| 41      | 5.0                  | 12.5        | 3.7                        |
| 52      | 11.1                 | 8           | 2.4                        |
| 64      | 17.7                 | 6.5         | 1.9                        |
| 67      | 19.4                 | 6.0         | 1.8                        |
| 71      | 21.7                 | 5.8         | 1.7                        |
| 74      | 23.3                 | 5.0         | 1.6                        |
| 75      | 23.9                 | 5.0         | 1.5                        |
| 1       |                      |             |                            |

TABLE A2.5. STIFFNESS MODULUS OF ASPHALTIC CONCRETE OF AASHO ROAD TEST BY VARIOUS METHODS

۰ ۹

|                 |                               | Values of Stiffness Modulus by Various Methods psi x 10 <sup>5</sup> |                    |                                                        |            |                                       |                       |                    |                 |  |  |  |  |
|-----------------|-------------------------------|----------------------------------------------------------------------|--------------------|--------------------------------------------------------|------------|---------------------------------------|-----------------------|--------------------|-----------------|--|--|--|--|
|                 | _                             | -                                                                    |                    | Coffman et al<br>AAPT 1964<br>pp 87-89<br>Dynamic Test | 8          | Finn i                                | n Ref <b>(1</b> 69) p | op 418             |                 |  |  |  |  |
| Temp.<br>°F     | Heukelom<br>& Klomp<br>Method | Nijoboer<br>Method                                                   | Adopted<br>Values* |                                                        | NCHRP 1-10 | Based on<br>Vanderpoel<br>Method      | Baker &<br>Papazian   | Adopted<br>by Finn | HRR 71<br>pp 70 |  |  |  |  |
| 1               | 2                             | 3                                                                    | 4                  | 5                                                      | 6          | 7                                     | 8                     | 9                  | 10              |  |  |  |  |
|                 |                               |                                                                      |                    |                                                        |            | · · · · · · · · · · · · · · · · · · · |                       |                    |                 |  |  |  |  |
| 20 <sup>0</sup> | 22.1                          | 5.6                                                                  | 16.6               |                                                        |            |                                       |                       |                    | 15.0            |  |  |  |  |
| 23 <sup>0</sup> | 18.8                          | 5.3                                                                  | 14.3               |                                                        |            |                                       |                       |                    | 14.0            |  |  |  |  |
| 290             | 16.6                          | 4.7                                                                  | 12.6               |                                                        |            |                                       |                       |                    | 13.0            |  |  |  |  |
| 41 <sup>0</sup> | 10.5                          | 3.7                                                                  | 8.2                | 17.0 at 40 <sup>0</sup> F                              |            |                                       |                       |                    | 10.0            |  |  |  |  |
| 520             | 8.0                           | 2.4                                                                  | 6.1                |                                                        |            |                                       |                       |                    | 8.0             |  |  |  |  |
| 64 <sup>0</sup> | 4.0                           | 1.9                                                                  | 3.3                |                                                        |            |                                       |                       |                    | 6.0             |  |  |  |  |
| 67 <sup>0</sup> | 3.7                           | 1.8                                                                  | 3.1                |                                                        |            |                                       |                       |                    | 6.4             |  |  |  |  |
| 71 <sup>0</sup> | 3.0                           | 1.7                                                                  | 2.6                |                                                        |            |                                       |                       |                    | 5.0             |  |  |  |  |
| 74 <sup>0</sup> | 2.6                           | 1.6                                                                  | 2.3                |                                                        |            |                                       |                       |                    | 4.5             |  |  |  |  |
| 75 <sup>0</sup> | 2.2                           | 1.5                                                                  | 2.0                | 6.0 at 77 <sup>0</sup> F                               | 1.5        | 3.4 at 77 <sup>0</sup> F              | 4.6 at 77°F           | 1.5                | 4.3             |  |  |  |  |

\*Adopted Values Calculated by  $\frac{\text{Col}(2) \times 2 + \text{Col}(3)}{3}$ 

\* \*

•

213

i 3

4 i

| Month     | Temp. <sup>O</sup> F | Stiffness Modulus<br>psi X 10 <sup>5</sup> |
|-----------|----------------------|--------------------------------------------|
| January   | 210                  | 16.0                                       |
| February  | 250                  | 14.2                                       |
| March     | 27 <sup>0</sup>      | 13.7                                       |
| April     | 41 <sup>0</sup>      | 9.0                                        |
| Мау       | 540                  | 6.0                                        |
| June      | 660                  | 4.0                                        |
| July      | 700                  | 3.5                                        |
| August    | 75 <sup>0</sup>      | 3.0                                        |
| September | 65 <sup>0</sup>      | 4.2                                        |
| October   | 510                  | 6.5                                        |
| November  | 430                  | 8.3                                        |
| December  | 280                  | 13.1                                       |

## TABLE A2.6. MONTHLY TEMPERATURES AND VALUES OF STIFFNESS

.

.

-

•



Fig A2.1. Plot of temperature versus stiffness modulus.

Figures 96 and 97 of AASHO Road Test Report 5 (Ref 70) show the moisture content and CBR values of the pavement components during various months. These values are entered in Columns 1 to 3 of Tables A2.7 and A2.8. NCHRP Report 1-11 (Ref 117) gives an approximate correlation between CBR and resilient modulus for these materials. Estimated values of resilient modulus based on this criterion are entered in Column 4. Special Report 66 (Ref 66) gives the test results of the AASHO Road Test materials as reported by various agencies. An average resilient modulus value of 15,000 psi for base and 8,000 psi for subbase are reported in this reference. Based on the AASHO Road Test results, a correlation between the AASHO Road Test strength coefficients and resilient modulus was developed (Ref 94). This criterion gives an expected variation in resilient modulus from 48,000 to 9,000 psi for base and 9,300 to 6,200 psi for subbase materials used in the AASHO Road Test. Heukelom and Klomp (Ref 60) observed that the modular ratio of the untreated material layers in the pavement in a stable condition are not expected to be more than 1.5 to 2.5. The expected values of resilient modulus for base and subbase based on this observation and assuming an average modular ratio of 2 are entered in Column 8. Special Report 66 (Ref 66) gives some CBR test values corresponding to the observed moisture contents. Corresponding values of resilient modulus estimated from NCHRP Report 1-11 (Ref 117) are entered in Column 11. Haynes and Yoder (Ref 57) have reported a range of modulus for base material as 33,500 psi to 39,500 psi. The plots of moisture content versus resilient modulus are shown in Figs A2.2 and A2.3.

From the above discussion, it is seen that it is difficult to pinpoint an absolute value of the resilient modulus for these materials. However, the modulus values for subbase were adopted on the basis of Heukelom and Klomp (Ref 60) criteria given in Column 8. These values are also about an average of the values given by other criteria. The modulus values of base were also based on Heukelom and Klomp criteria except that some adjustments, as shown in Column 12, were made because of very little change in the base CBR values during the months from September to March.

<u>Fine Grained Subgrade Materials</u>. No direct information regarding the monthly resilient modulus of the AASHO Road Test subgrade material is available from the test results. However, an indirect estimation of monthly resilient modulus is possible by use of available information (consolidated in Table A2.9) of the test results of this material.

|                                                                                               | AAS                                                              | SHO Road Test<br>ort 5 (Ref 70)                                             | NCHRP                                                                                                                | Average                             | Jain<br>(Ref                   |                 | Heuklom<br>& Klomp                                                                                         | Page 4<br>Test Rest<br>Material 1                                                                                                   |                                                     |                                                               |                                                                                                            |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Month                                                                                         | CBR                                                              | M.C.<br>Corresponding<br>to CBR Test                                        | 1-11<br>(Ref 117)<br>E lbs/sq in.                                                                                    | Value of<br>E reported<br>in Ref 66 | Strength<br>Coefficients<br>A2 | E lbs/sq in.    | (Ref 60)<br>E <sub>base</sub> = <sup>2</sup> XE <sub>subbase</sub><br>(1.5 to 2.5)                         | Moisture<br>Content                                                                                                                 | CBR                                                 | NCHRP 1-11                                                    | Values<br>Adopted<br>E lbs/sq in.                                                                          |
| 1                                                                                             | 2                                                                | 3                                                                           | 4                                                                                                                    | 5                                   | 6                              | 7               | 8                                                                                                          | 9                                                                                                                                   | 10                                                  | 11                                                            | 12                                                                                                         |
| Jan.<br>Feb.<br>March<br>April<br>May<br>June<br>July<br>Aug.<br>Sep.<br>Oct.<br>Nov.<br>Dec. | 36*<br>36*<br>19<br>22<br>25<br>28<br>32<br>34<br>35<br>36<br>36 | 4.2*<br>4.2*<br>6.7<br>6.0<br>5.3<br>4.8<br>4.6<br>4.5<br>4.4<br>4.3<br>4.3 | 21,000<br>21,000<br>21,000<br>14,000<br>16,000<br>17,500<br>18,500<br>19,000<br>19,500<br>20,000<br>20,500<br>21,000 | 15,000**                            | 0.25                           | 48,000<br>9,300 | 26,400<br>26,400<br>14,400<br>17,200<br>19,600<br>21,600<br>23,200<br>24,400<br>24,800<br>25,600<br>26,400 | 1.    7.3      2.    6.1      3.    6.8      4.    6.6      5.    6.8      6.    10.0      7.    7.0      8.    6.3      9.    12.5 | 72<br>170<br>120<br>80<br>87<br>92<br>34<br>93<br>3 | 28,000<br>-<br>28,500<br>29,000<br>30,000<br>19,500<br>30,000 | 24,000<br>24,000<br>15,600<br>18,000<br>19,600<br>21,600<br>23,200<br>24,000<br>24,000<br>24,000<br>24,000 |

### TABLE A2.7. MODULUS OF RESILIENCE FOR AASHO ROAD TEST BASE MATERIAL

\$

ŧ

\* Assumed Values

٠

• '

\*\* Values do not correspond to any particular month

According to the material specifications (AASHO Road Test Report 2 pp 64) the CBR for the base material was specified as 75, which according to NCHRP 1-11 will correspond to an E value of 28,000 psi.

Haynes and Yoder (Ref 57) reported values ranging from 33,500 to 39,500 psi.

.

٠

#### TABLE A2.8. MODULUS OF RESILIENCE FOR AASHO ROAD TEST SUBBASE MATERIAL

٩

|                                                                                        | AASHO Road                                                                   | load Test                                                      |                                                                                                            | Åverage                             | Jain I<br>(Ref                 | Model<br>94)** | Heuklom                                                                                                           | Page 79,<br>Test R<br>Subba<br>by Var                                                                                              | Table<br>esults<br>se Mat<br>ious A                | 17 of Ref 66<br>of AASHO<br>erials<br>gencies**                                        |                                                                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Month                                                                                  | Report 5<br>M.C.                                                             | (Ref 70)<br>CBR                                                | NCHRP 1-11<br>(Ref 117)<br>E lbs/sq in.                                                                    | Value of<br>E reported<br>in Ref 66 | Strength<br>Coefficients<br>A3 | E lbs/sq in.   | & Klomp<br>(Ref 60)<br><sup>2</sup> xE<br>subgrade                                                                | м.с.                                                                                                                               | CBR                                                | E From<br>NCHRP 1-11                                                                   | Values<br>Adopted<br>E lbs/sq in.                                                                                 |
| 1                                                                                      | 2                                                                            | 3                                                              | 4                                                                                                          | 5                                   | 6                              | 7              | 8                                                                                                                 | 9                                                                                                                                  | 10                                                 | 11 .                                                                                   | 12                                                                                                                |
| Jan.<br>Feb.<br>March<br>April<br>June<br>July<br>Aug.<br>Sep.<br>Oct.<br>Nov.<br>Dec. | 5.0*<br>5.0*<br>7.6<br>7.0<br>6.2<br>5.7<br>5.4<br>5.3<br>5.2<br>5.1<br>5.0* | 26<br>26<br>12<br>15<br>17<br>19<br>21<br>22<br>23<br>25<br>26 | 14,000<br>14,000<br>14,000<br>10,800<br>11,200<br>11,500<br>12,300<br>13,000<br>13,200<br>13,700<br>14,000 | 8,000**                             | 0.11<br>0.09                   | 9,300<br>6,200 | 13,200<br>13,200<br>13,200<br>7,200<br>8,600<br>9,800<br>10,800<br>11,600<br>12,200<br>12,400<br>12,800<br>13,200 | 1.    11.7      2.    7.3      3.    8.0      4.    6.8      5.    5.7      6.    7.2      7.    7.9      8.    7.4      9.    8.3 | 45<br>27<br>28<br>66<br>16<br>40<br>42<br>47<br>41 | 17,000<br>13,500<br>14,000<br>18,000<br>11,400<br>16,000<br>16,500<br>17,500<br>16,000 | 13,200<br>13,200<br>13,200<br>7,200<br>8,600<br>9,800<br>10,800<br>11,600<br>12,200<br>12,400<br>12,800<br>13,200 |

\* Assumed Values

\*\* Values do not correspond to any particular month

· · · ·

.

.

### TABLE A2.9. MODULUS OF RESILIENCE FOR AASHO ROAD TEST SUBGRADE MATERIALS

.

.

|                                                                                        | AASHO<br>Test Re                                                                         | Road<br>port 5                                                               | NCHRP                                                                                | Average<br>Values<br>of E  | Heuklom<br>& Klomp                                                                   | Page 70, Ref 66. Test<br>Results of Subgrade<br>Material by Various<br>Agencies** |                                               |                                                      | Fig 16 Page 555 (HRB Proc<br>Vol 34) & Fig 5 (C.K. Chan &<br>S.B. Seed) AASHO Subgrade<br>& Vicksburg Clay Test Results<br>*** |                      |                             |                              |                              | NCHRP 35<br>Page 15 and<br>Table 5                               |                                                                          |                                               |                                                                                      |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|------------------------------|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Month                                                                                  | (Ref<br>M.C.                                                                             | 70)<br>CBR                                                                   | 1-11<br>(Ref 117)<br>E 1bs/sq in.                                                    | Reported<br>in<br>Ref 66** | (Ref 60)<br>E=1420×<br>CBR                                                           | м.с.                                                                              | CBR                                           | E<br>NCHRP 1-11                                      | м.с.                                                                                                                           | Stress               | Strain                      | E<br>Vicksburg               | E<br>AASHO                   | м.с.                                                             | Coffman<br>et al<br>psi                                                  | Seed<br>et al<br>psi                          | Values<br>Adopted<br>E lbs/sq in.                                                    |
| 1                                                                                      | 2                                                                                        | 3                                                                            | 4                                                                                    | 5                          | 6                                                                                    | 7                                                                                 | 8                                             | 9                                                    | 10                                                                                                                             | 11                   | 12                          | 13                           | 14                           | 15                                                               | 16                                                                       | 17                                            | 18                                                                                   |
| Jan.<br>Feb.<br>March<br>April<br>June<br>July<br>Aug.<br>Sep.<br>Oct.<br>Nov.<br>Dec. | 15.0*<br>15.0*<br>15.0*<br>16.5<br>16.1<br>15.8<br>15.5<br>15.3<br>15.2<br>15.1<br>15.0* | 3.7*<br>3.7*<br>2.0<br>2.4<br>2.8<br>3.1<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7* | 4700<br>4700<br>3000<br>3500<br>4000<br>4100<br>4300<br>4400<br>4500<br>4600<br>4700 | 5500                       | 5300<br>5300<br>2840<br>3400<br>4000<br>4400<br>4400<br>4800<br>5000<br>5100<br>5300 | 15.9<br>16.2<br>14.8<br>14.5<br>16.1<br>13.4<br>12.7                              | 2.8<br>2.6<br>3.7<br>3.8<br>1.5<br>4.5<br>7.2 | 4000<br>3700<br>4700<br>4800<br>2500<br>5200<br>7500 | 14.0<br>15.1<br>16.7<br>17.2                                                                                                   | 80<br>80<br>80<br>80 | .01<br>.0125<br>.042<br>.05 | 8000<br>6400<br>1900<br>1200 | 6400<br>5000<br>1500<br>1000 | 13.5<br>15<br>16<br>Nijh<br>give<br>Afte<br>from<br>Befc<br>fros | 6200<br>4900<br>4500<br>coer & Met<br>values:<br>tr = 8500<br>rre= 21000 | 13000<br>8000<br>6600<br>ccraft<br>psi<br>psi | 6600<br>6600<br>3600<br>4300<br>4900<br>5400<br>5800<br>6100<br>6200<br>6400<br>6600 |

\* Assumed values

٠

. 1

\*\* Values do not correspond to any particular month

\*\*\* For the same strain AASHO soil required about 80 percent stress of Vicksburg clay

Reference AASHO Subgrade Test results page 616 of First Conference on Structural Design of Asphalt Pavement, at M.C. of 15.3 the value of E varied from 3000 to 12000 psi.

3

.

\*



.

Fig A2.2. Base modulus versus moisture content.



.

. '

Fig A2.3. Subbase modulus versus moisture content.

| Stiffness<br>Modulus E<br>lbs/sq in. x 10 <sup>5</sup> | Std Deviation<br>E <sub>sd</sub><br>1bs/sq in. x 10 <sup>5</sup> | Coefficient of<br>Variation %<br>1/2 | Number<br>of<br>Samples | Product<br>3 x 4 | Remarks                   |
|--------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------|------------------|---------------------------|
| 6.80                                                   | 1.53                                                             | 22.5                                 | 19                      | 427.5            |                           |
| 7.03                                                   | 1.91                                                             | 27.2                                 | 20                      | 544.0            |                           |
| 7.12                                                   | 1.41                                                             | 19.8                                 | 20                      | 396. <b>0</b>    |                           |
| 5.90                                                   | 1.11                                                             | 18.8                                 | 19                      | 357.2            |                           |
| 1.79                                                   | 0.42                                                             | 23.4                                 | 19                      | 444.6            |                           |
| 1.65                                                   | 0.39                                                             | 23.6                                 | 20                      | 472.0            |                           |
| 1.52                                                   | 0.41                                                             | 27.0                                 | 20                      | 540.0            |                           |
| 1.34                                                   | 0.37                                                             | 27.6                                 | 19                      | 524.4            |                           |
| 5.95                                                   | 1.54                                                             | 25.9                                 | 12                      | 310.8            |                           |
| 4.40                                                   | 0.90                                                             | 20.4                                 | 8                       | 163.2            |                           |
| 4.96                                                   | 1.22                                                             | 24.6                                 | 10                      | 246.0            |                           |
| 1.57                                                   | 0.42                                                             | 26.8                                 | 12                      | 321.6            | Avg.                      |
| 1.39                                                   | 0.26                                                             | 18.7                                 | 12                      | 224.4            | Coeff.<br>of              |
| 1.47                                                   | 0.41                                                             | 27.8                                 | 8                       | 222.4            | $\frac{5490}{200} = 24.0$ |
| 1.42                                                   | 0.42                                                             | 29.6                                 | 10                      | 296.0            | 228                       |
|                                                        |                                                                  |                                      |                         |                  |                           |
|                                                        | <b>1</b>                                                         | Total                                | 228                     | 5490.1           | L.,                       |

# TABLE A2.10. VARIATION IN THE STIFFNESS VALUES OF ASPHALT CONCRETE (Ref Table 2, NCHRP-39 pp 12)

•

.

.

.

### TABLE A2.11. VARIATION IN THE STIFFNESS MEASUREMENTS ON PAVEMENT SAMPLES (Ref Page 136 2nd International Conference on Structural Design of Asphalt Pavements)

.

• • •

|                   |                     |      | Measured Stiffness, psi <sub>X</sub> 10 <sup>5</sup> |                               |      |                       |                               |                                       |  |  |  |  |  |
|-------------------|---------------------|------|------------------------------------------------------|-------------------------------|------|-----------------------|-------------------------------|---------------------------------------|--|--|--|--|--|
|                   |                     |      | 68 <sup>0</sup> F                                    |                               |      | 40° F                 | Maara                         |                                       |  |  |  |  |  |
| Location          | No. of<br>Specimens | Mean | Standard<br>Deviation                                | Coefficient of<br>Variation % | Mean | Standard<br>Deviation | Coefficient of<br>Variation % | Mean<br>Coefficient of<br>Variation % |  |  |  |  |  |
| Surface<br>Course | 20                  | 1.52 | 0.41                                                 | 27.0                          | 7.12 | 1.41                  | 20.0                          | 23.5                                  |  |  |  |  |  |
| Base Course       | 8                   | 1.47 | 0.41                                                 | 28.0                          | 4.40 | 0.90                  | 20.0                          | 24.0                                  |  |  |  |  |  |

,

د **۵** 

AASHO Road Test Report 5 (Ref 70), in Figs 96 and 97, gives the moisture content and CBR value, of the AASHO Road Test pavement subgrade for various months. This information is entered in Columns 1 to 3 of Table A2.9. Based on NCHRP Report 1-11 (Ref 117) Column 4 contains the estimated value of resilient modulus. Special Report 66 (Ref 66) contains the test results of the AASHO Road Test material. The reported values of resilient modulus vary from 1,300 psi to 5,500 psi. The test results in this report also show the CBR values for various moisture contents. These values of CBR with corresponding estimated values (based on NCHRP Report 1-11) of resilient modulus are shown in Column 9. Heukelom and Klomp (Ref 60) have given an approximate relation between CBR and resilient modulus. An evaluation of modulus values based on this criterion is entered in Column 6. In Highway Research Board proceedings Vol 34, Chan and Seed have reported the stress-strain test results on AASHO subgrade and Vicksburg clay at various moisture contents. From these test results it was observed that for the same strain AASHO subgrade clay needed about 80 percent stress in comparison to the Vicksburg clay. Based on this information estimated values of resilient modulus of AASHO subgrade soil are given in Column 14. NCHRP Report 35 (Ref 165) also contains some test results on the AASHO Road Test subgrade soil. These are tabulated in Columns 15 to 17. Fluctuations in resilient modulus values based on different criteria are apparent from Table A2.9. However, based on such information a decision on values to be adopted for design purposes is not difficult, at least for an experienced designer. Based on averaging out the available information the values adopted for the present analysis are obtained from Fig A2.4 and tabulated in Column 18 of Table A2.9.

<u>Stochastic Variations in Elastic Modulus</u>. Direct observations are not available to estimate the expected variations in the elastic modulus values of the subgrade, subbase, base materials, and surface asphalt concrete used in the AASHO Road Test. However, some indirect information was utilized to determine the expected statistical variations in the elastic modulus of the AASHO Road Test materials.

<u>Asphalt Concrete</u>. In NCHRP Report 39 (Ref 42), some test data are available for various field specimens. These are shown in Table A2.10. A weighted mean calculation of the test results of the specimens shows a coefficient of variation of about 24 percent. Table A2.11 is an extract of







.

.

Fig A2.4. Subgrade modulus versus moisture content.

stiffness measurements of some pavement samples taken from page 136 of the Proceedings of the Second International Conference on Structural Design of Asphalt Pavements. This table gives an approximate value of coefficient of variation as 24 percent of the mean value. Table A2.12 shows the observed variations in the test results of the "stability test" performed on some asphalt concrete sample and reported in <u>Public Roads</u>, August 1969. The coefficient of variation in these test results varied from 12.2 to 23 percent. Based on this information, a value of coefficient of variation of 25 percent is assumed for analysis in this report.

<u>Untreated Granular Base Material</u>. Test results on AASHO Road Test materials for CBR values as reported in <u>Special Report 66</u> (page 96 of Ref 66) are reproduced below with the statistical calculations made for the coefficient variation (page 40, <u>Statistical Methods</u>, by Snedecor).

| Item | Number of<br>Samples | Mean<br>Value | Range    | Expected<br>Standard Deviation | Coefficient of<br>Variation, % |
|------|----------------------|---------------|----------|--------------------------------|--------------------------------|
| CBR  | 5                    | 100           | 83 - 140 | $57 \times 0.53 = 30$          | 30                             |

The coefficient of variation is about 30 percent of mean value. The other test results (Ref 66, page 90) show that the coefficient of variation was observed as 3 percent for maximum density and 16 percent for optimum moisture content. The results of 24 tests on the gravel base mixture (Ref 66, page 73) gave an average liquid limit of 18.9 and an average plasticity index of 3.1 with corresponding standard deviations of 2.1 and 1.9 which will give coefficients of variation of 11 percent and 60 percent, respectively. While other test results may not give a direct value of statistical variations expected in resilient modulus, the CBR has a direct correlation with this parameter. A 30 percent coefficient of variation calculated above for CBR may also be expected for the resilient modulus. However, this information is based on five samples and can only be treated as approximate. For the analysis in this report, a value of 25 percent for the coefficient of variation was adopted.

# TABLE A2.12. HOT MIX MARSHALL TEST DATA "VARIATION IN STABILITY TEST VALUES" (Ref "Public Roads" August 1969)

.

| Test                      | Project<br>Nos. | States<br>Nos. | Average<br>Standard<br>Deviation | Average<br>Mean | Coefficient<br>of<br>Variation % |
|---------------------------|-----------------|----------------|----------------------------------|-----------------|----------------------------------|
| Marshall Stability<br>1bs | 18              | 4              | 283.00                           | 2305.00         | 12.2                             |
| Marshall Flow 100/in      | 15              | 2              | 1.29                             | 8.62            | 15.0                             |
| Marshall Air Voids<br>Pct | 18              | 4              | 1.00                             | 4.33            | 23.0                             |

<u>Untreated Granular Subbase</u>. The results of the CBR test in <u>Special Report</u> 66, Ref 66) are given below.

Coefficient Number of Mean Expected of Variation, % Item Samples Value Range Standard Deviation 5 32 - 86  $54 \times 0.53 = 29$ 50 CBR 58

The Computed Coefficient of Variation for the CBR value from the above test results is 50 percent.

Also, Fig 60 of AASHO Road Test Report 2 (Ref 67) gives the results of CBR determinations on 80 test samples. This shows a mean value as 34.7 and standard deviation 9.3. The coefficient of variation works out as 26.8 percent. Page 90 of <u>Special Report 66</u> (Ref 66) gives the coefficient of varition in the measurement of maximum density as 2.5 percent, while in optimum moisture content it was 13 percent. Thus, based on the above results, the *c* subbase coefficient of variation is expected to be of the same order as for the base material. Therefore, for analysis in this report, a 25 percent value for the coefficient of variation for the AASHO Road Test Subbase is adopted.

<u>Fine Grained Subgrade</u>. The data for CBR are given below, according to page 96 of <u>Special Report 66</u>.

| Item | Number of<br>Samples | Mean<br>Value | Range   | Expected<br>Standard Deviation | Coefficient of<br>Variation, % |
|------|----------------------|---------------|---------|--------------------------------|--------------------------------|
| CBR  | 8                    | 5.0           | 4 - 6.7 | .351 × 2.7 = 1.0               | 20                             |

Figure 49 of AASHO Road Test Report 2 (Ref 67) gives the CBR determination of 80 test samples. The test shows a mean value of CBR as 2.9 and its standard deviation as 1.28. The coefficient of variation on this basis works out as 44 percent of the mean value. Page 90 of Ref 66 gives the coefficient of variation for optimum moisture content as 7.4 percent and for maximum density as 1.8 percent. Page 32 of AASHO Road Test Report 2 (Ref 67) shows statistical variations found for the Atterbergs limit test results, as follows:

| Test                     | Coefficient of<br>Variation, % |
|--------------------------|--------------------------------|
| Liquid limit             | 19.5                           |
| Plastic limit            | 11.5                           |
| Plasticity index         | 31.0                           |
| Optimum moisture content | 14.2                           |
| Maximum dry density      | 2.5                            |

Based on the above test results it is seen that the average statistical variations in the test results of the subgrade are expected to be about the same order as for the base and subbase. Therefore, for the analysis in this report, a value of 25 percent for coefficient of variation is adopted.

#### TABLE A2.13. VARIABLES AFFECTING MATERIAL RESPONSE

#### I. Loading variables

- A. Stress history (nature of prior loading)
  - 1. Non-repetitive loading (such as preconsolidation)
  - 2. Repetitive loading
    - a. Nature
      - (1) Simple
      - (2) Compound
    - b. Number of repetitive applications
- B. Initial stress state (magnitude and direction of normal and shear stresses)
- C. Incremental loading
  - 1. Mode of loading
    - a. Controlled stress (or load)
    - b. Controlled strain (or deformation)
    - c. Intermediate modes
  - 2. Intensity (magnitude and direction of incremental normal and shear stresses)
  - Stress path (relation among stresses both normal and shear as test progresses)
  - 4. Time path
    - a. Static
      - (1) Constant rate of stress (or load)
      - (2) Constant rate of strain (or deformation)
      - (3) Creep
      - (4) Relaxation
    - b. Dynamic
      - (1) Impact
      - (2) Resonance
      - (3) Other
        - (a) Sinusoidal (rate of loading is variable)
        - (b) Pulsating (duration, frequency, and shape of
        - load curve are variables)
  - 5. Type of behavior observed
    - a. Strength (limiting stresses and strains)
    - b. Deformability
  - 6. Homogeneity of stresses
  - 7. Drainage (drained or undrained)
- II. Mixture variables
  - A. Mineral particles
    - 1. Maximum and minimum size
    - 2. Gradation
    - 3. Shape
    - 4. Surface texture
    - 5. Angularity
    - 6. Mineralogy
    - 7. Adsorbed ions
    - 8. Quantity

TABLE A2.13. (Continued)

- B. Binder
  - 1. Type
  - 2. Hardness
  - 3. Quantity
- C. Water
  - 1. Quantity
- D. Voids
  - 1. Quantity
  - 2. Size
  - 3. Shape
- E. Construction Process
  - 1. Density
  - 2. Structure
  - 3. Degree of anisotrophy
  - 4. Temperature
- F. Homogeneity
- III. Environmental variables
  - A. Temperature
  - B. Moisture
  - C. Alteration of material properties
    - 1. Thixotropy
    - 2. Aging

    - Curing
      Densification

- I. Tension
  - A. Uniaxial tension
  - B. Indirect tension
    - 1. Splitting tension
    - 2. Cohesiometer
- II. Compression
  - A. Unconfined, uniaxial compression
  - B. Triaxial compression
    - 1. Open system
      - a. Conventional triaxial compression
        - (1) Normal
        - (2) Vacuum
        - (3) High pressure
      - b. Box with cubical specimen
    - 2. Closed system
      - a. Oedometer
      - b. Cell
      - c. Hveem stabilometer
- III. Flexure
  - A. System
    - 1. Revolving bar
    - 2. Simple flexural
  - B. Loading
    - 1. Cantilever
    - 2. Simple beam
      - a. Point supports
      - b. Uniform supports
- IV. Direct shear
  - A. Direct shear (rigid split box)
  - B. Double direct shear
  - C. Uniform direct shear (rigid caps with confined rubber membrane and split rings for lateral restraint)
  - D. Uniform strain direct-shear (hinged box)
  - E. Punching shear
- V. Torsion
  - A. Pure torsion
  - B. Triaxial torsion
  - C. Specimen shape
    - 1. Solid cylinder
    - 2. Thick-walled, hollow cylinder

- I. Rectangular parallelepiped
  - A. Short
  - B. Long
  - C. Cubic
- II. Cylinder

.

.

•

-

٠

.

- A. Solid
  - 1. Short
  - 2. Long
- B. Thick-walled, hollow
  - 1. Short
  - 2. Long
- III. Plate
- IV. Other

|             |             | n Gradation |                                |                    |                                  | Texas Triaxial Test |                                        |        |                   |  |
|-------------|-------------|-------------|--------------------------------|--------------------|----------------------------------|---------------------|----------------------------------------|--------|-------------------|--|
| Designation |             |             | Compaction<br>Characteristics* |                    | Actual Unit<br>Weight, D<br>100% | Average<br>Moisture | Failure Stress At<br>Indicated Lateral |        |                   |  |
|             | Description |             | Moisture<br>%                  | Unit Weight<br>pcf | Ratio<br>pcf                     | illarity<br>%       | 0 psi                                  | 15 psi | Triaxial<br>Class |  |
|             |             | Fine        | 7.3                            | 133.9              |                                  | 7.4                 | 18.1                                   | 147.7  | 3.0               |  |
| HP-27-8     | Rounded     | Medium      | 6.8                            | 135.4              | 133.8                            | 7.0                 | 23.8                                   | 158.7  | 2.8               |  |
|             |             | Coarse      | 6.7                            | 135.2              |                                  | 7.3                 | 23.2                                   | 161.9  | 2.7               |  |
|             |             | Fine        | 7.3                            | 133.9              |                                  | 7.0                 | 42.1                                   | 223.2  | 1**               |  |
| HP-27-9     | Angular     | Medium      | 7.0                            | 136.0              | 136.0                            | 6.8                 | 62.1                                   | 246.9  | 1***              |  |
|             |             | Coarse      | 6.8                            | 137.7              |                                  | 5.9                 | 57.7                                   | 270.7  | 1****             |  |
|             |             | Fine        | 11.9                           | 124.2              |                                  | 11.5                | 28.8                                   | 169.5  | 2.5               |  |
| HP-27-10    | Soft        | Medium      | 11.9                           | 124.2              | 124.3                            | 11.6                | 52.0                                   | 167.8  | 2.1               |  |
|             |             | Coarse      | 11.9                           | 124.2              |                                  | 11.3                | 48.2                                   | 175.4  | 2.1               |  |

### TABLE A2.16. SUMMARY OF CHARACTERISTICS OF RESEARCH MATERIALS

٠

1 **F** 

\* Compactive effort = 13.26 ft lbs per cu in.

\*\* Lowest classification of HP-27-9

\*\*\* Medium classification of HP-27-9

\*\*\*\* Highest classification of HP-27-9

(Continued)

• •

# TABLE A2.16. (Continued)

• •

.

• • •

|             | Description | escription Gradation | Plasticity                         |                          |                          |                                          |          |                                |                    |         |                     |        |
|-------------|-------------|----------------------|------------------------------------|--------------------------|--------------------------|------------------------------------------|----------|--------------------------------|--------------------|---------|---------------------|--------|
|             |             |                      | Liquid<br>Limit<br>Liquid<br>Class | Plasti-<br>city<br>Index | Linear<br>Shrink-<br>age | Los Angeles<br>Abrasion<br>("A" Grading) |          |                                | Classification     |         |                     |        |
| Designation |             |                      |                                    |                          |                          | 100 rev.                                 | 500 rev. | Texas Wet<br>Ball Mi <b>ll</b> | Texas              | Unified | Specific<br>Gravity | ft/day |
| HP-27-8     |             | -<br>Fine            | 21.3                               | 7.4                      | 5.6                      | 7.2                                      | 27.3     | 37.2                           | Type B,<br>Grade 3 | GMd     | 2.64                |        |
|             | Rounded     | Medium               |                                    |                          |                          |                                          |          | 36.2                           | Type B,<br>Grade 3 | GMd     | 2.63                | 0.006  |
|             |             | Coarse               |                                    |                          |                          |                                          |          | 32.0                           | Type B,<br>Grade 3 | GMd     | 2.65                |        |
|             | Angular     | Fine                 | 17.8                               | 2.3                      | 2.4                      | 2.4 6.8                                  | 25.3     | 39.0                           | Type A,<br>Grade 2 | GMu     | 2.64                |        |
| HP-27-9     |             | Medium               |                                    |                          |                          |                                          |          | 36.1                           | Type A,<br>Grade 1 | GMu     | 2.63                | 0.003  |
|             |             | Coarse               |                                    |                          |                          |                                          |          | 33.5                           | Type A,<br>Grade l | GMu     | 2.64                |        |
| HP-27-10    | Soft        | Fine                 |                                    |                          |                          |                                          |          | 50.3                           | Type A,<br>Grade 2 | GMu     | 2.67                |        |
|             |             | Medium               | 20.2 4.8                           | 2.7                      | 19.0                     | 57.9                                     | 47.8     | Type A,<br>Grade 2             | GMu                | 2.67    | 0.002               |        |
|             |             | Coarse               |                                    |                          |                          |                                          |          | 48.1                           | Type A,<br>Grade 2 | GMu     | 2.67                |        |







Fig A2.6. A typical load-deformation oscillograph (A&M material) (after Ref 35).



Fig A2.7. Typical load-time trace for two load cycles (AASHO material) (after Ref 57).





Fig A2.8. Angular medium aggregate similar to AASHO base material (after Ref 35).






Fig A2.10. Deformation characteristics - AASHO Road Test subgrade soil (after Ref 165).

APPENDIX 3

OUTLINE OF COMPUTER PROGRAM AVAILABLE FOR ANALYSIS OF STRESSES, STRAINS, AND DISPLACEMENTS IN A FIVE-LAYERED ELASTIC SYSTEM UNDER A LOAD UNIFORMLY DISTRIBUTED ON A CIRCULAR AREA

## APPENDIX 3. OUTLINE OF COMPUTER PROGRAM AVAILABLE FOR ANALYSIS OF STRESSES, STRAINS, AND DISPLACEMENTS IN A FIVE-LAYERED ELASTIC SYSTEM UNDER A LOAD UNIFORMLY DISTRIBUTED ON A CIRCULAR AREA

This program was developed by H. Warren and W. L. Dieckmann of California Research Corporation, Richmond, California, in 1963 and is based on the solution which was used by Mr. J. Michelow (California Research Corporation) in his analysis of multi-layered asphalt pavement system. The following is the outline of the computer program (after Ref 167).

#### Introduction

- A. The program computes the following items numerically at any point in the layered system for a given load on a circular area of the free surface:
  - 1. vertical, tangential, radial, shear, and bulk stress;
  - 2. vertical displacement;
  - 3. radial, tangential, and shear strain.

Note that a cylindrical system of coordinates is used.

- B. The following input data should be provided:
  - 1. the wheel load (total load);
  - 2. tire pressure;
  - 3. load radius (= total load/ $\pi \times$  tire pressure);
  - 4. for each layer, layer number, modulus of elasticity, Poisson's ratio, and thickness.

#### Description of the Layered System

The system consists of (5) layers of different homogeneous, ideally elastic materials. Each layer is of uniform thickness and infinite dimensions in all horizontal directions, stratified vertically over the semi-infinite bottom layer. Figure A3.1 shows complete details of the system.

#### Limitations

A. There are no body forces or couples present and inertia forces are neglected.



E<sub>N</sub>,μ<sub>N</sub>

Fig A3.1. Stresses in a multi-layer system.

- B. Stresses and strains small enough to be described in an infinitesimal elastic theory.
- C. The load is uniformly distributed over a circular area.
- D. The system is axisymmetric (z is axis of symmetry), which requires that each layer is uniform, homogeneous, and isotropic.

Summary of the Mathematical Model

For a cylindrical system of coordinates, the components of stress are:

 $\sigma_z$  = vertical stress  $\sigma_r$  = radial stress  $\sigma_{\theta}$  = tangential stress  $\tau_{zr}$ ,  $\tau_{r\theta}$ ,  $\tau_{z\theta}$  = shear stresses.

and the components of displacement are:

u = the radial displacement

- v = the tangential displacement, and
- w = the vertical displacement.

Because of the symmetry of the system under consideration (z axis is an axis of symmetry):

 $\tau_{\mathbf{r}\theta} = \tau_{\mathbf{z}\theta} = \mathbf{v} = \mathbf{0}$ 

Satisfying equilibrium and compatibility conditions and solving for the stresses, strains, and displacements, one finds that with each layer there are four unknowns (A, B, C, and D).

In total there are 4N unknowns to be solved from 4N boundary conditions.

#### Boundary Conditions

A. The assumption that adjacent layers are bonded and no slip occurs at the interfaces (rough interface) gives (4N-4) boundary conditions, i.e.;

1. 
$$i \sigma_{z} = i + 1 \sigma_{z}$$
  
2. 
$$i w = i + 1 w$$
  
3. 
$$i \tau_{rz} = i + 1 \sigma_{rz}$$
  
4. 
$$i u = i + 1 \sigma_{rz}$$

Super- and sub-prefixes refer to the layer number and the interface number in the system, respectively.

B. The load situation at the surface gives two boundary conditions:

1.  $\sigma_{z} = -p$   $0 \le r \le a$ , z = 02.  $\tau_{rz} = 0$   $0 \le r \le \infty$ , z = 0

C. The two last boundary conditions result from the requirement that the stresses, strains, and displacements are finite at infinite depth. This will lead to the fact that two of the unknowns of the bottom layers are zero.

$$1. \quad A_{N} = 0$$
$$2. \quad B_{N} = 0$$

At this point one has 4N unknowns and 4N boundary conditions.

APPENDIX 4

÷

۰.

.

.

.

....

.

COMPUTER PROGRAM AND ANALYSIS

APPENDIX 4.1

ĸ

FLOW CHART



Fig A4.1. Flow chart.

(Continued)



Fig A4.1. (Continued)



Fig A4.1. (Continued)



Fig A4.1. (Continued)



Fig A4.1. (Continued)



Fig A4.1. (Continued)

APPENDIX 4.2

•

••••

•

J.

•

.

•

۰.

÷

LISTING OF COMPUTER PROGRAM FOR CRACKING INDEX AND RUT DEPTH INDEX

|          | PROGRAM CREDEX(INPUT. OUTPUT. TAPES=INPUT. TAFE2, TAPE3, TAPE4)    | CRK     | 1                 |
|----------|--------------------------------------------------------------------|---------|-------------------|
|          | CCMMON /LAY/ E(5, 12)+ NU(5); NM, THIN(5); IM, NL. A(20).          | CRK     | 2                 |
|          | 1 TIRE(20) + EA(5, 12) + UROB(5) + 0708(5) + R0(5) , EM(5) ,       | CRK     | 3                 |
|          | 2 DRC (5)                                                          | CRK     | 4                 |
|          | CCHMON /PRIN/ AN1(13, 5, 20), AN2(13, 5, 20), AN3(13, 5, 20),      | CRK     | 5                 |
|          | 1 DSP (12+ 3) + N18+ L (20) + NAT (5) + MONTH (12)                 | CRK     | 6                 |
|          | COMMON /DUMPY/ L1(20)+ L2(20), N(20), TR(20)+ X(20), ANS(12).      | CRK     | 7                 |
|          | 1 TITLE(8) + TRAF(12) + CONF(5) + STG(5) + EN(2+ 12) + ENNT(480) + | CRK     | 8                 |
|          | 2 DEF(12+ 5)+ DEFD(12+ 5)+ DEFC(12+ 5)+ OEFTOT(12)+ DEFN(12+       | CRK     | 9                 |
|          | 3 5) • STRAIN (12. 5.2) • CH(4. 12) · FO(4. 12) • H(5) • R(5) •    | CRK     | 10                |
|          | 4 XX (12, 20), THN (20), 1TH (400) TAC (400)                       | CRK     | ii                |
|          | DATA NO/DUND/                                                      | COK     |                   |
|          | COMPANY CALLS THE IDV(20)                                          | CON     | 15                |
|          | DATA MANTU ZION JANANGAN JAN SEDAJARA JAN MARKA .                  | Colf    | 1.                |
|          | DATA "OFTE FIGH STOR STOR FERMART STOR MARCH S                     | CRA     | 17                |
|          | 1 IVN AFRIL , ISB MAY , ISB JONE ,                                 | CRN CRN | 12                |
|          |                                                                    | CRN CRN | 15                |
|          | 3 IN OCTOBER & IN NOVEMBER & IN DECEMBER /                         | CHA     | 11                |
|          |                                                                    | CHA     | 10                |
|          | REAL LI LI CE, N. RUI LNI, LSI, LSN                                | CKA     | 14                |
| 10       | CONTINUE                                                           | CRK     | 20                |
|          | 10 11 1 = 1, 12                                                    | CRM     | 21                |
|          | TRAF(1) = 0.00333                                                  | CRK     | 2Z                |
| 11       | DEF 101(1) = 0.0                                                   | CKK     | 23                |
|          |                                                                    | CHN     | 24                |
|          | CM(1) = 0.0                                                        | CRR     | 25                |
| 12       | EQ(1) = 0.0                                                        | ÇRK     | 20                |
|          | 00 13 1 = 1, 60                                                    | CHK     | SI                |
|          | $DEF(1) = O_{\bullet}O$                                            | CRN     | 28                |
|          | DEr(U(1)) = 0.0                                                    | URN     | 27                |
|          | DEFC(1) = 0.0                                                      | CKR     | 30                |
|          | DEFC(1) = 0.0                                                      | CRA     | 31                |
|          | STRAIN(I) = 0.0                                                    | CRA     | 32                |
| 13       | $STRAIN(I+D0) = 0 \cdot 0$                                         | CRA     | 33                |
|          |                                                                    | CRA     | 39                |
| 14       | ENAT(I) = 0.0                                                      | CRA     | 33                |
|          | UQ 15 I m 1, 1300                                                  | CRA     | 30                |
|          | ANI(1) = 0.0                                                       | CRK     | 37                |
|          | AN2(1) = 0.0                                                       | CRK     | 38                |
| 15       | AN3(1) = 0.0                                                       | CRK     | 34                |
|          | READ (5,980) TITLE                                                 | CRK     | 40                |
|          | 1r (EOF+ 5) 970+20                                                 | CRR     | 41                |
| 20       | PHINI 990, IIILE                                                   | CHR     | 42                |
| C        |                                                                    | CHR     | 4.5               |
|          | 14 = 0                                                             | CRA     | 44                |
| <b>.</b> | HEAD MATERIAL PAMAMETERS                                           | CHR     | 42                |
|          | READ (S+1000) NL+ NH+ LDOF+ LNDF+ Y+ GR+ GO+ G1+ G2+ TEST          | URA     | 40                |
| Ę.       | NL NUMBER OF AXLE LDAG GROUPS                                      | CRK     | <b>4</b> <u>T</u> |
| ç        | NM NUMBER OF MATERIALS (MAXIMUM OF FIVE)                           | CHK     | 48                |
| 5        | LUDP LOAD DISTRIBUTION FACTOR, RATIO                               | CHA     |                   |
| Ę.       | LNDF LANE DISTRIBUTION FACTOR, RATIO                               | CHK     | 50                |
| 5        | T UESIGN PERIODA YEARS                                             | CRR     | 21                |
| ç        | UN INATEIC GROWTH HATEL RATIO                                      | CRN     | 25                |
| F        | WY PHOVICE NO IF THE ACTUAL TRAFFIC DATA FOR                       | CRA     | 23                |
| ç        | LACH HONTH IS NOT BIVEN                                            | CRA     | 29                |
| ç        | WI PROVIDE NO IF THE MONTHLY TRAFFIC                               | CRA     | 37                |
| Ģ        | PERCENTAGE OUES NOT VARY                                           | CRA     | 30                |
| ç        | WE PHOVIDE NO IF THE ELASTIC MODULUS VALUE                         | CRA     | 31                |
| С        | OF THE UIFFERENT PATERIALS DO NOT VARY MONTHLY                     | CKW     | 20                |

ċ

ŧ

.

| с<br>с<br>с | TEST LEAVE<br>11 DEX<br>Provi | BLANK IF CALCULATIONS FOR BOTH CRACKING<br>AND RUT DEPTH<br>DE 1 FOR CRACKING INDEX ONLY | CRK<br>CRK<br>CRK | 566 |
|-------------|-------------------------------|------------------------------------------------------------------------------------------|-------------------|-----|
| Ċ           | PROVI                         | DE 2 FOR RUT DEPTH ONLY                                                                  | CRK               | 6   |
| c           | READ AND CALCUL               | ATE WHEEL LOAD DATA                                                                      | CRK               | 6   |
|             | N18 = 0                       |                                                                                          | CRK               |     |
|             |                               |                                                                                          |                   |     |
|             | UU 30 I # 1, ML               | - Larrel - Mint - Ataniah                                                                | CRK               | 6   |
| c           | 11-13 AXIE                    | * CZ(I)) N(I)) TIRE(I)                                                                   | CRA               | 0   |
| č           | N NUMBE                       | A OF AXLE APPLICATIONS IN WHEEL LOAD GROUP I                                             | CRK               | 7   |
| ĉ           | IN FI                         | RST YEAR OF ANALYSIS                                                                     | CRK               | 7   |
| ç           | TIRE TIRE                     | PRESSURE + PSI                                                                           | CRK               | 7   |
| С           | 1 (T) × (L)                   | (1) + 2(1))/2.                                                                           | CRK               | -;  |
|             | IF (L(T) .GT. L               | (M)) M m T                                                                               | CRK               | ÷   |
|             | IF (L(I) +EC+ 1               | 8.0) N18 = I                                                                             | CRK               | 7   |
| ¢           | NI8 INDEX                     | OF 18-KIP LOAD GROUP                                                                     | CRK               | 7   |
| ç           | OF IN                         | DEX OF HIGHESY LOAD GROUP IF 18K NOT                                                     | CRK               |     |
| 610         | 4(T) = 500                    | AULL<br>T/310_3097/2.84/TV/TTRF/TVV                                                      | C PK              | 7   |
|             | IF (N18 .EQ. 0)               | N18 = M                                                                                  | CRK               | ă   |
| Ċ           |                               |                                                                                          | CRK               | 8   |
| Ċ           | L MEAN                        | VALUE OF AXLE LOAD GROUP, KIPS                                                           | CRK               | 8   |
| ç           | A RADIU                       | S OF CONTACT AREA                                                                        | CRK               | . 6 |
| C           | PRINT 1020. (11(1).           | 12/11. 1(1). TIDE/11. N(1). F = 1. N(1)                                                  | CRK               | 8   |
|             | PRINT 1030. LDOF. L           | NDF. Y                                                                                   | CRK               | Ă   |
|             | 1F (GR. KE. 0.0)              | PHINT 1035 - 6R                                                                          | CRK               | ē   |
| с           |                               |                                                                                          | CRK               | 8   |
| ÷.          | ты IM # 1                     | PERFITE MODULUE TARE NAT VARM CANTULA                                                    | CRK               |     |
| E E         | 1 1 1                         | ELASTIC HODULUS DOES NOT VART MONTHLT                                                    | CHM               | Š   |
| v           | LS1 = 1.                      | -CASILO FOLOEDS DOES TART HORTHET                                                        | CRK               | ģ   |
|             | 00 70 H = 1. AH               |                                                                                          | CRK               | 9   |
|             | IF (02-10) GO TO              | 0 40                                                                                     | CRK               | 9   |
|             | HEAD (5,1040) MAT(M)          | ), THIN(M), NU(N), CONF(M), SIG(H), E(M, 1)                                              | CRK               | . 9 |
| <b>A</b> 0  | 10 10 50<br>TM = 12           |                                                                                          | CRA               | - × |
|             | READ (5.1050) MAT (M          | . THIN (M) . NU (H) . CONF (M) . SIG (H) . (F (M.                                        | CRK               |     |
|             | 1 I)+ I = 1+ IM               | )                                                                                        | ÇRK               | 10  |
| ç           | WAT MATER                     | IAL IDENTIFICATION                                                                       | CRK               | 10  |
| ç           |                               | UM ALLOWABLE THICKNESS, INCHES                                                           | CRK               | 10  |
| ž           | CONF CONF1                    | DENCE LEVEL FOR FLASTIC MODULUS                                                          | CRK               | 10  |
| č           | SIG STAND                     | ARU DEVIATION OF FLASTIC MODULUS                                                         | CRK               | 10  |
| ć           | EXPRES                        | SSED AS A PERCENTABE OF THE MEAN VALUE                                                   | CRK               | 10  |
| ç           | ALSO                          | EQUAL TO THE COEFFICIENT OF VARIATION                                                    | CRK               | 10  |
| ç           | E ELAST                       | IC MODULUS VALUE, EITHER PROVIDE ONE                                                     | CRK               | 10  |
| ç           | VALUE<br>TE A                 | FOR EACH FUNIN DR UNE CUNSTANT VALUE                                                     | CKK<br>COX        | 10  |
| č           | 16 00                         |                                                                                          | CRK               | 11  |
| ċ           |                               |                                                                                          | CRK               | 11  |
| 50          | CONTINUE                      |                                                                                          | CRK               | ii. |
|             | LS1 # L51*                    | CONF (M)                                                                                 | CRK               | 11  |
| С           | L31 PRODU                     | CT OF ALL CONFIDENCE LEVELS                                                              | CRK               | 11  |
|             |                               |                                                                                          |                   |     |

|      | 1F (TEST +EG+ 2+0) GO TU 70                           | CRK 116 | ċ    |     |
|------|-------------------------------------------------------|---------|------|-----|
|      | DO 60 I = 1, 1M                                       | CRK 117 | C    |     |
|      | EA(M) II = E(M, I)-ALPHA(CONF(M))*SIG(M)/100+*E(M, I) | CHK 118 | 160  |     |
| 50   | CONTINUE CLASIIC MODULUS AT CONFIDENCE LEVEL          | CRN 119 | -    |     |
| , 'v | CONTINUE                                              | CRN 120 | c    |     |
| ž    | PRINT MATERIAL BARANCERS                              | CRN 121 |      |     |
| L.   | PDTNJ JACA, (MAT(T), T = J. NH)                       | CRN 122 | 0    |     |
|      | TRINT LUGUE STREET & X IE HE?                         | CRN 123 | 170  |     |
|      | NO = NP = 1 $PFINT 1070 = (MIN(1), T = 1, AS)$        | CRA 124 | -    | FF  |
|      | PRINT 10AD. (NUCL). T = 1. NM)                        | CPK 126 | c    |     |
|      | IF (TEST NEA 2.0) PRINT 1160. (E16/.). ( = 1.4.44)    | CPK 127 | C    |     |
| ċ    | - (150)                                               | CPK 128 | 180  |     |
|      | 1F (Q2 -FQ- NQ) gQ to 100                             | CRK 129 | -    |     |
|      | PRINT 1096. MONTH                                     | CRK 130 | C C  |     |
|      | IF (TEST +EG. 2.0) 60 TO 90                           | CRK 131 | ž    |     |
|      | 0 80 I = 1 • NH                                       | CoK 132 | Č.   |     |
|      | PRINT 1100. MAT(I), CONF(I), (EA(I, J), J = 1, 12)    | CRK 133 | è    |     |
| 80   | PRINT 1110, (E(1, J), J = 1, 12)                      | CRK 134 | ċ    |     |
|      | G0 T0 110                                             | ČRK 135 | •    |     |
| 90   | PRINT 1120, (MAT(I), (E(I, J), J = 1, 12), I = 1, NM) | CRK 136 | 190  | PR  |
|      | 60 TO 110                                             | CRK 137 |      |     |
| 100  | PRINT 1130 + (E(J+1) + J = 1 + NM)                    | CRK 138 | 209  | PF  |
|      | IF (TEST •EQ• 2•0) GO TO 120                          | CRK 139 | 210  |     |
|      | PRINT 1140  (EA(J) I)  J = 1  NM                      | CRK 140 |      |     |
|      | $PRINT_{I150}  (CONF(J), J = 1, NM)$                  | CRK 141 |      |     |
| 110  | CONTINUE                                              | CRK 142 |      |     |
| 120  | CONTINUE                                              | CRK 143 | 220  |     |
| -    | PRINT 990. TITLE                                      | CRK 144 | ç    |     |
| Ç    |                                                       | CRK 145 | с    |     |
| ç    |                                                       | CRK 140 | -    |     |
| C    | READ AND PRINT FATIGUE CONVE DATA                     | CRK 147 | с    |     |
| ~    | REAU COTIGIUT AIT OF SULDET LAI                       | CRN 140 |      | CA  |
| 2    |                                                       | CRN 147 |      |     |
| ç    |                                                       | CRK 150 | 230  | PH  |
| ž    |                                                       | CPK 152 | 24.0 | DE  |
| ž    |                                                       | CRK 152 | 240  |     |
| č    | TEST # 2 SKIP CALCHIATIONS IN BADT ONE                | CRK 155 | 23*  |     |
| C    | IF (TEST -EQ. 2.) 60 To 150                           | CRK 155 | 260  |     |
|      | PRINT 1170. Al. B. SDLOG. LN1                         | CRK 156 |      | PP  |
| r    |                                                       | CRK 157 |      |     |
| č    |                                                       | CRK 158 |      | PE  |
| č    | CALCULATE TANGENTIAL STRAIN FOR EACH LOAD GROUP AND   | CRK 159 |      |     |
| ć    | LAYER THICKNESS (CONF. AND MEAN VALUE)                | CRK 160 | ċ    |     |
| ċ    |                                                       | CRK 161 | с    |     |
|      | 15 (02 .NE. NO) GO TO 130                             | ČRK 162 | ċ    |     |
|      | PRINT 1190                                            | CRK 163 | с    |     |
| 130  | CALL LÂYEŘ (IM, 1)                                    | CRK 164 | с    |     |
| 150  | CONTINUE                                              | CRK 165 |      | RĘ  |
| С    |                                                       | CRK 166 | с    |     |
|      | IA = A                                                | CRK 167 | с    |     |
|      |                                                       | CRK 168 |      | PA  |
|      | IF (40-NU) 260,160,260                                | CRK 169 |      |     |
| c    | MEAN THAFFIC PERCENTAGES FOR EACH MONTH               | CRK 170 |      | C A |
| c    | THE UNLY THE IF ACTUAL TRAFFIC DATA IS NOT GIVEN      | CRK 171 | 270  |     |
| ç    |                                                       | CRK 172 | 271  |     |
| С    |                                                       | CKW 113 | c    |     |

· · · ·

|       | IF TRAFFIC PERCENTAGES ARE CONSTANT FOR EACH DESIGN YEAR.         | CRK 174 |
|-------|-------------------------------------------------------------------|---------|
| ;     | THESE VALUES MAY BE OMITTED IF Q1 = NO                            | CRK 175 |
| 160   | CONTINUE                                                          | CRK 176 |
|       | IF (01-ND) READ (5+1200) TRAF                                     | CRK 177 |
| ;     | THAF TRAFFIC PERCENTAGE OF MONTH                                  | CRR 178 |
|       | SU# = 0.0                                                         | CHR 114 |
| _     | 170 170 1 = 10 12                                                 | CRK 180 |
| 170   | SUM = SUM + TRAF(1)                                               | CRR 181 |
|       | FRINT 1210+ (MONTP(I)+ TRAF(I)+ I = 1+ 12)+ 50M                   | CRM 182 |
|       |                                                                   | CRK 185 |
| ;     | COLOGA                                                            | CRK 185 |
| 1.80  | TO(1) = 1 + 1 + 1 + TO(1) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | CRK 186 |
|       | TR TRAFFIC DUE TO GROWTH COR YEAR                                 | CRK 187 |
|       |                                                                   | CRK 188 |
|       |                                                                   | ČRK 189 |
|       |                                                                   | CRK 190 |
|       | PHINT THAFFIC DATA CALCULATED FROM TRAFFIC PERCENTAGES            | CRK 191 |
| ;     | AND TRAFFIC GROWTH RATE AND AXLE APPLICATIONS                     | CRK 192 |
|       | IF (31-KO) 200+190+200                                            | CRK 193 |
| 190   | PRINT 1/20                                                        | CRK 194 |
|       | <u>Go</u> t <sub>O</sub> 210                                      | CRK 195 |
| 209   | PEINT 1230, MUNTH                                                 | CKW 140 |
| 210   | CO 250 J = 1+ NL                                                  | CKK 147 |
|       | IF (G1-K0) PHINT 1240. L(J)                                       | CHK 198 |
|       |                                                                   | CRK 200 |
| 220   |                                                                   | CPK 201 |
| ~ ~ ~ | A MONTHLY TRAFFIC CALCULATED FROM PERCENTAGES.                    | CRK 202 |
|       | GROWTH KATE. AND LOAD                                             | CRK 203 |
|       | $IR = IR \cdot 1$                                                 | CRK 204 |
|       | IN INDEX FOR IOBIN WRITE OF TRAFFIC FOR YEAR                      | CRK 205 |
|       | CALL IOBIN (6HWRITER, 3, X(1)+ 12+ IÁC(IR))                       | CRK 206 |
|       | IF (Q1-NO) 230+230+240                                            | CRK 207 |
| 230   | PFINT_1250. L(J). M. X(1)                                         | CRK 208 |
|       | GO TO 250                                                         | CRK 204 |
| 240   | PRIN1 1260 + M + (X(K) + K = 1 + 12)                              | CRN 210 |
| 250   | CONTINUE                                                          | CRE 211 |
| 74.0  |                                                                   | CRK 213 |
| 204   | WI - EF                                                           | CRK 214 |
|       | 00 270 . # 1 NI                                                   | CRK 215 |
|       |                                                                   | CRK 216 |
|       |                                                                   | CRK 217 |
| •     |                                                                   | CRK 218 |
|       | IF QO IS NOT NO, READ ACTUAL TRAFFIC DATA                         | CRK 219 |
|       | GIVE MONTHLY VALUES FOR EACH YEAR FOR FIRST LOAD                  | CRK 220 |
|       | GROUP. THEN REFEAT SET FOR ADDITIONAL LOAD GROUPS                 | CRK 221 |
| ;     | _                                                                 | CRK 222 |
|       | READ (5+1270) YR+ (X(1), I = 1+ 12)                               | CRN 223 |
| -     | A MONTHLY TRAFFIC VALUE                                           | CRK 224 |
| :     | TH IDENTIFICATION VARIABLE                                        | CRN 223 |
|       | PHINI 12800 THO (A(I)) I # 10 121                                 | CHN 220 |
|       | 18 V 1841<br>CA TABL (6MUDITED D V/1), 10, TAC/TON                | Cok 227 |
|       | CONTINUE                                                          | CRK 220 |
| 270   |                                                                   | CRK 230 |
| 211   | EALET TO P                                                        | CRK 231 |
| -     |                                                                   |         |

, , » ,

|       | IF (TEST .EC. 2.0) GD TU 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 232 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| с     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 233 |
| с     | CALCULATE THEOREFICAL REPETITIONS BY STRAINS FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK 234 |
| c     | LAYER SUBROUTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 235 |
|       | RK = ALPHA(LN1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 236 |
|       | 1T = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK 237 |
| ¢     | RK K VALUE CORRESPONDING TO LN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ČRK 238 |
| r     | 17 INDEX FOR JOBIN WRITE OF THEORETICAL TRAFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 239 |
| c     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 240 |
|       | IW1 # IW+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CBK 241 |
|       | $104861 = 2 + 1 \times 1 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 242 |
|       | 12 = (1+1)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 243 |
|       | $1^{\mu}$ (1 <sub>M</sub> -1) GO TO 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 244 |
|       | PRINT 1290, LN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 245 |
|       | 60 10 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHK 246 |
| 200   | CONTINUE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHN 247 |
| - 00  | PRINT 1300+ C(12)+ MONTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHW 548 |
| 290   | CALL TOBIN (THREADSRMT 2, ANS(1)) IN, IDA(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHR 24V |
| C     | IN INDEA FOR IUBIN READ OF STRAINS ANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHA 750 |
| ç     | ANS IANGENIIAL SIMAIN AL ROTIOM OF ASPHALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHK 251 |
| ç     | CONCRETE CALCULATED IN SUBHUUTINE LAYER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHN 252 |
| Ę.    | USING CONFIDENCE LEVEL OF ELASTIC MUDULUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHR 253 |
| C     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHN 254 |
| 344   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CKN 255 |
| 300   | $(HK(J) = IU_{-} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \} = \{A \cup U(A) = A \setminus G \} = \{A \cup G \mid U(A) = A \setminus G \cap G \} = \{A \cup G \mid U(A) = A \setminus G \cap G \} = \{A \cup G \mid U(A) = A \setminus G \cap G \} = \{A \cup G \mid U(A) = A \setminus G \cap G \cap G \} = \{A \cup G \mid U(A) = A \setminus G \cap G \cap G \cap G \} = \{A \cup G \cap G$ | CHW 520 |
| ç     | THN THEORETICAL NUMBER OF REPETITIONS FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHA 257 |
| ç     | TANTIGUE EQUATION AT SUME SPECIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CMP 528 |
| С     | CONTIDENCE LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHU 524 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHN 260 |
| 310   | PRINI 1310+ LNI+ (THN(J)+ J = 1+ 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK 261 |
| 1     | 60 10 3+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHA SOR |
| C .   | The MODIFIELD TO CONSTANT. THE TO CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRN 203 |
| C     | THOUGHT THOUGHT IN THE TOUSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 200 |
| 350   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 203 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRM 200 |
| 0 د و | (HK(0) = 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 267 |
| Ϋ́    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRX 200 |
| C     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 207 |
|       | TT TTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CPK 171 |
| 340   | CALL (ORTH LAMBETTED, A. TUNITA, 15, TTUITA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 572 |
|       | CALL IODIG CONCEPTION AN INVERTING IN THE TANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CPK -77 |
| r     | I _ 1 IS USED RECAUSE IN THE LAVED SUBDOGDAM. THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CBK 574 |
| ž     | STRAINS ARE WRITEN ON TAPES IN ALTERNATING ODED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 275 |
| 2     | WEAN EVEL AND CONSTRENE OF A LEADER AND A CONSTREME AND A CONSTREMENTAL AND A CONSTREM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAK 376 |
| ι     | CALL LOBIN (7 HEADSCH) 2. ANS(1). TH. IDX(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 277 |
| ř.    | ANS TANGENTIAL STRAIN AT BOTTOM OF ASPHALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK 278 |
| ř     | CONCRETE CALCULATED IN SUBROUTINE LAYER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 279 |
| ŕ     | USING MEAN VALUE OF FLASTIC HODULUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK 280 |
| -     | 00 35n u # 1+ 1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 281 |
| 350   | THE (J) # A1 # ANS (.() ## (-#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 282 |
| è .   | THN THEORETICAL NUMBER OF REPETITIONS FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK 283 |
| č     | INPUT FATIGUE EQUATION AT SOME SPECIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 284 |
| č     | MEAN LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK 285 |
| -     | 1F (1H-1) 370+370+360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAK 286 |
| 360   | PRINT 1920, (THN(J), J = 1, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAK 287 |
|       | GU TO 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 288 |
| 370   | 00 380 . = 2, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 289 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

| 1 <sub>R</sub> 0 | THN (J) # THN(1)                                                   | CRK 20  |
|------------------|--------------------------------------------------------------------|---------|
|                  | GRIGT 1334, L(12), SAV, THN(1)                                     | ČRK 29  |
| 190              |                                                                    | CRK 29  |
|                  | CALL LUGIIG CONMELIER, 4, INNEIS 12, TIMEITS                       | CHA 29. |
| 400              | CONTTIDE                                                           | CRK 29  |
| c<br>c           |                                                                    | CRK 29  |
|                  | 15N = 151+1N1                                                      | CRK 29  |
|                  | PK = ALPHA (LSN)                                                   | CRK 291 |
| c                | LON SLM OF CONFIDENCE LEVELS OF ELASTIC MODULUS                    | CRK 29  |
| c                | AND FATIGUE EQUATION                                               | CRK 300 |
| c i              | PK K VALUE CORRESPONDING TO LIN                                    | CRK 301 |
|                  | PHINT 990, TITLE                                                   | CRK 301 |
|                  | NLN = 0                                                            | CRK 303 |
|                  |                                                                    | CRK 304 |
| ~                |                                                                    | CRK 305 |
| ŕ                | CALCULATE RATIO OF N ACTUAL TO N THEORETICAL                       | CRK 307 |
| •                | UC 430 1 = 1+ NL                                                   | CRK 300 |
|                  | PRINT 1340+ L(I)+ MONTH                                            | CRK 30  |
|                  | IR = 0                                                             | CRK 310 |
|                  | NA FINETI<br>CALL TOUTH (7-90-005-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | CHN 31  |
|                  | CALL TODIA CONCREMENTARY 44 LIVINA 124 LIMINARY                    | CRA 314 |
|                  | CALL TOBIN (7HREACSKP. A. THNELL. 12. TTHINNI)                     | CRK 11  |
|                  | CO 430 +0 = 1+ 14                                                  | CRR 31  |
|                  | HH T HH+1                                                          | CRK 310 |
|                  | CALL TOBIN (THHEACSKP: 3, XII): 12, TAC(MMI)                       | CRK 31  |
|                  | 00 410 II # 1, 12                                                  | CRK 31  |
|                  | EN(1) II) # A(YI)/L1(II)                                           | CRK 314 |
| ~                | ENTER DATE EN NUMER DATETE DE NEAM DETETETED                       | CRK 321 |
| è .              | EN(2) REFECTOR THATTIC TO THAT REPITITIONS                         | CRK 321 |
|                  | TR # 18+1                                                          | CRK 12  |
|                  | ENAT (IR) . ENNT (IR) +EN (1+ IT)                                  | CRK 32  |
|                  | 7R # 18+1                                                          | CRK 325 |
| +10              | FNAT(IA) * ENAT(IR) + EN(2+ 11)                                    | CRK 32  |
| C                | ENNI CLMGLATIVE SUM OF EN                                          | CHK 321 |
| ~                | NIN PAGE SVID CONTROL<br>NIN PAGE SVID CONTROL                     | CMR 320 |
| ¢.               | WLA # NLA+4                                                        | CRK 11  |
|                  | 1F (NLN-44) 430+420+420                                            | CRK 131 |
| •20              | NLN = 0                                                            | CRK 332 |
|                  | FRINT 990. TITLE                                                   | CRK 333 |
|                  | PEINI 1340, LUIS MONTH                                             | CRK 334 |
| 430              | CONTINUE<br>CONTINUE                                               | CHA 331 |
|                  | ENKILL FENKILLAFNNTILA                                             | CRK 330 |
| 440              | ENNT(1+1) # ENNT(1+1)+ENNT(1-1)                                    | CRK 338 |
|                  | PEINT 1370                                                         | CRK 335 |
|                  | NLN # 1                                                            | CRK 340 |
|                  | LO 49 I. IN. 2                                                     | CRK 341 |
|                  | IF (NLN-44) 460+450+450                                            | CRK 342 |
| *7¢              | NLK # KLK+44<br>Detail non Itilia                                  | CRR 343 |
|                  |                                                                    | CHR 344 |
| 440              | NLK # NLK+1                                                        | CRK 343 |
| 40.              | JZ = (1+1)/2                                                       | CRK 341 |
|                  |                                                                    |         |

· · · · ·

|          | CO 470      | JJ = 3 + 2 _                                   | CRK 348 |     |
|----------|-------------|------------------------------------------------|---------|-----|
|          | L1          | (JJ) = ENNT(J+JJ-1)                            | CRK 349 |     |
|          | IF (L10     | JJJ 470,480,470                                | CRK 350 | 520 |
| 470      | L2          | (JJ) = ALOG10(L1(JJ))                          | CRK 351 |     |
|          | SD          | L = (L2(1)=L2(2))/PK                           | CRK 352 |     |
|          | AK.         | = -L2(2)/SOL                                   | CRK 353 |     |
|          | **          | = XRORM(AK, O, 1)                              | CRK 354 |     |
|          | CI CI       | * AA*10*+3                                     | CRK 355 | ċ   |
|          | PRINT 1380. | J2, L5N, L1(1), L2(1), SDL, AK, AA, CI, L1(2), | CRK 356 | ĉ   |
|          | 1 L2(2)     | •                                              | CRK 357 | ċ   |
|          | UU TO 4     | 90                                             | CRK 358 |     |
| 480      | ZE          | HU = 0+0                                       | CRK 359 | c   |
|          | PRINT 1390. | _J2, LSN, (ZERO, III # ], 4)                   | CRK 360 |     |
| 490      | CUNIINU     |                                                | CRK 361 | ċ   |
| 500      | CUNTINU     |                                                | CRK 362 |     |
| ÷        | IF CLES     | 1 +EG+ 1+A/ GO TU 970                          | CRK 363 |     |
| ç        |             |                                                | CRK 364 | 530 |
| ç        |             |                                                | CRK 365 | Ç   |
| ç        |             |                                                | CRK 366 | ç   |
| C        |             | PART (NU                                       | CHR 367 | ĉ   |
| ç        |             |                                                | CHK 368 | С   |
| č        | .7          |                                                | CKP 36A | _   |
| C        |             | NUMBER OF DEFINS FUR CALCULATIONS              | CRN 379 | Ċ   |
|          | 15 11       |                                                | CRR 371 |     |
|          | CALL AVED   | 12m+ 11 PRINI 1400                             | CRR 372 | C   |
| 2        | CALL CRICK  | (144 141                                       | CRN 373 |     |
| <u>.</u> |             |                                                | UNN 374 | ç   |
| Č,       | CALCULA     | TIONS OF CONCINING AND VENTICAL PRESSURES      | CRA 375 | ç   |
| ž        |             | CVERDIADEN                                     | CRK 379 | ç   |
|          | 000 10      | CIENE COUPER                                   | COK STR | C   |
|          |             |                                                | CRK 370 |     |
|          |             |                                                | COK 345 | 224 |
| ř        | 8           | UNIT WEIGHT OF MATERIAL (LR/CU IN)             | CRK 3A1 |     |
| č        | DZOB        | VERTICAL PRESSURE OUF TO OVERBURDEN            | CRK 382 |     |
| ř        | DROB        | RADIAL PRESSURE DUE TO OVERBURDEN              | CRK 383 |     |
| č        | DHC         | INPUT RADIAL PRESSURE FOR WHICH CURVES ARE     | CRK 184 |     |
| ř        |             | GIVEN FOR MATERIALS                            | CRK 145 | 560 |
| č        | EM          | INPUT PARAMETER TO CALCULATE CORRECT RADIAL    | CRK 186 |     |
| č        |             | PRESSURE FOR GIVEN CURVE. VALUE IS & WHEN      | CRK 387 |     |
| č        |             | REGRESSION EQN IN N.Z1.23 AND E IS GIVEN       | CRK 388 |     |
| č        |             |                                                | CRK 389 | 570 |
| č        |             |                                                | CRK 390 | 580 |
| č        |             |                                                | CRK 391 | č   |
| č        |             |                                                | CRK 392 | ć   |
| -        | READ (5,141 | 0) (R(1), EM(1), DRC(1), 1 # 1, NH)            | CRK 393 | ć   |
|          | RD          | (1) = (R(1) + R(2) + 0 + 5) / 1 + 5            | CRK 394 | ċ   |
|          | RD          | (2) = (R(1)+R(2)+R(3)+0+5)/2+5                 | CRK 395 |     |
|          | RD          | (3) = (R(1)+R(2)+R(3))/3.                      | CRK 396 | c   |
| Ċ        | PD          | COMPOSITE WEIGHT                               | CRK 397 |     |
| Ċ        | ۲           | COMPOSITE THICKNESS                            | CRK 398 | ¢   |
|          | 00 510      | I = 1+ NM                                      | CRK 399 | Ċ   |
|          | EM          | (1) # ABS(EH(1))                               | CRK 400 | с   |
| 510      | IF (DeC     | (I] .EG. 0.0) ORC(I) = 1.                      | CRK 401 | č   |
|          | н           | 17 * TMIN(1)+THIN(2)+0+5                       | CRK 402 | Ċ   |
|          | н (         | 2) # T#IN(1)+THIN(2)+THIN(3)+0+5               | CRK 403 |     |
|          | P H(        | 31 = THIN(1)+THIN(2)+THIN(3)                   | CRK 404 | 590 |
|          | UQ 520      | 1 = 1 + NS                                     | CRK 405 |     |

• • • • •

|       | K = 1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK        | 406         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
|       | DRCB(I) = NU(K)/(I+=NU(K))=RD(I)=H(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK        | 407         |
| 52C   | nZCB(I) = RD(I)+H(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ÇRK        | 408         |
|       | LO 540 1 = 1. NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 409         |
|       | UU 540 K # 1+ IM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRN        | 410         |
|       | DO 530 -1 # 2+ NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 411         |
|       | I+IC = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHR        | 414         |
| ç     | BACK AND SUDBACK CAN OUT ATTACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 413         |
| ç     | BASE AND SUBBASE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COK        | 115         |
| ç     | ANT (M. 1. T) - ANT (M. 1. 1) - AT ATA A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ČPK        | 416         |
| ~     | VEAN UFFTICAL STREES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK        | 417         |
| ¢.    | AN3(K. J. T AMIN) (+1.0. (AN3(K. J. 1)+D008(J)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 418         |
| ÷.    | RADIAL STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 419         |
|       | ST = (ABS(AN3(K. J. 1))+*FH(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 420         |
|       | AND (K) U1 I) = AN1 (K) U, 13+ (DRC (U1))/SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK        | 421         |
| 530   | ANZ(K+ J+ 1) = SIGN(ANZ(K, J+ 1)+ AN1(K+ J+ 1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 422         |
| Ċ.    | DESIGN VENTICAL STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK        | 423         |
| ĉ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 424         |
| č     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 425         |
| С     | SUBGRADE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHP        | 420         |
|       | ANIIK, NO, IJ = ANIIK, NS, TJ=2.0+U20BINS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHA        | 421         |
| c     | PEAN VERIICAL STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHA        | 428         |
| -     | THE ANALY AND IN A MINICALE CONTRACT AND A THE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRA        | 427         |
| C.540 | HAUTAL STRESS<br>AND (K. NS. 1) - ANT (K. NS. TLADOC (MM)-ANT (K. NS. 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ČPK        | <b>1</b> 31 |
| ÷     | DESTGN VERTICAL STAFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK        | 432         |
| ř     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 433         |
| ř     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 434         |
| č     | IM = 1 ELASTIC MODULUS VALUE CONSTANT MONTHLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 435         |
| -     | IF (IM+1) 550+550+580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK        | 436         |
| 550   | CO 570 F = 2+ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 437         |
|       | Do 560 - + 1, NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 438         |
|       | E(u, M) = E(u, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 439         |
|       | DO 560 I # 1+ NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 440         |
|       | AN1 (M+ J+ I) = AN1 (I+ J+ I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHR        | 441         |
| ~ ~ ~ | $ANZ \{ \Pi_{\varphi}  J \neq I \} = ANZ \{ I_{\varphi}  J_{\varphi} \mid I \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHA<br>ADK | 446         |
| 560   | ANSING UP $13 = 4n3(1) + 37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRR        | 443         |
|       | $\begin{array}{cccc} \mathbf{f}_{1} \mathbf{h}_{1} \mathbf{f}_{2} &= \mathbf{f}_{1} \mathbf{f}_{2}  | Cok        | 115         |
|       | 0.010 to $0.010$ m $1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK        | 446         |
| 570   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK        | 447         |
| 580   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK        | 448         |
| č     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 449         |
| č     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 450         |
| ć     | PRINT DESIGN CONFINING PRESSURE AND VERTICAL PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK        | 451         |
| è .   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 452         |
|       | NLN = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK        | 453         |
| c     | NLN NUMBER OF LINES PRINTED PAGE SKIP CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 454         |
|       | DO 060 11 = 1 + NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHA        | 433         |
| ç     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 430         |
| C     | ART INDEFEATERIAL ALVAD GRUUPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CPF        | 431         |
| ç     | I = } VENILCAL STRESS MEAN<br>I = 0 VENILCAL STRESS MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK        | 430         |
| Ļ     | t = 2 through and a measure<br>t = 3 calital stoffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COX        | 457         |
| L.    | 1 F (N) N=451 600.590.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK        | 461         |
| 590   | PRINT 990. TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ČRK        | 462         |
|       | NLK # 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK        | 463         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |

· · · · ·

| 600  | NLN = NLN+NC+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK A6A |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COK 465 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 465 |
|      | The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK 467 |
|      | $\mathbf{r} = \mathbf{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|      | $\frac{2}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHN 460 |
|      | LUIN, 1251, MAILUNI, OKCUMI, ANILLE NZA III, ANSII, NZA II).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHR 469 |
| 2    | 1 ~NJ{[, N3, 14], 1 = 1, 2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK 470 |
| ç    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 471 |
| °Ç – |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 472 |
| С    | MONTHS 3 THROUGH 11 IN GROUPS OF THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK 473 |
|      | DO 630 JJ = 1, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 474 |
|      | £+UL = £U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK 475 |
|      | 2+EL = 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK 476 |
|      | IF (NLN-45) 620,610,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 477 |
| 610  | PRINT 990. TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CBK 478 |
| -    | NLA B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 479 |
| 620  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK ARA |
| 630  | PRINT 1434. (MONTHEILS I = Ja. (5), ((ANIE), K. TT), ANDEL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK 481 |
| 000  | $1 \qquad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK (BO |
| ÷.   | $\mathbf{x} = \mathbf{x} + $ | COK 402 |
| L.   | NONTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRI 463 |
| ç    | FORTH 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHR 484 |
| C.   | 15 Jan JEN JEN JAN JAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHR 485 |
|      | 1 (NLN-43) 630,640,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRN 480 |
| 640  | PRINT 990, TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 487 |
|      | NLN = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 488 |
| 650  | NLN # NLN+NS+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK 489 |
|      | PRINT 1440, MONTH(12) ((AN1(12, K, 11), AN2(12, K, 11), AN3(12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 490 |
|      | 1 K+ II})+ K = 1+ NS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 491 |
| .660 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 492 |
| č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 493 |
| ć    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 494 |
| č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 495 |
| ē.   | DETERMINE STRAIN CORRESPONDING TO DESIGN VERTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRN 496 |
| č    | STRESS ACCORDING TO INPUT FATIAUE CURVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 497 |
| ř    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK A98 |
| ž    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CDK A09 |
| ž    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 600 |
| L    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK SUZ |
|      | $J = \{J, J, J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHA 203 |
|      | CALL IOBIN (INREAUSRP. 3, XII), 12, TAC(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHR 504 |
|      | 00 670 K = 1 + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 505 |
| _670 | XX(JJ+ K) = X(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 506 |
| ¢    | AX(LOAD GROUP, MONTH) TRAFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK 507 |
| Č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 508 |
| Ċ    | LOOP WHICH INCLUCES SIX MONTHS FOR PRINTOUT PURPOSES ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK 509 |
|      | D0 960 JJ = 1+ 12+ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 510 |
|      | DO 680 I = 1, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 511 |
|      | DO 680 y = 1, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 512 |
| 680  | $AN1(13, J_{7}) = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK 513 |
|      | j = j = j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK 514 |
| č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 515 |
| ž    | ANY (MONTH-MATERIAL JOAD GROUP) IS NOW THE STRATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK S16 |
| ž    | APPROPIATE TO THE CORRESPONDING DESIGN VERTICAL STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK e17 |
| 2    | ANI (13) ATFOIN ALL AND THE CONTRACT AND ALL AND ATTOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COK E18 |
| -    | DINI 1450- TI. (MONTM/17/ 3) THE COMMOLATIVE SIMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPK 819 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRN 517 |
|      | 15 (FW 1) 1) 400-400 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRN 520 |
|      | 7. (YY(I4 1)) QAQAQA(KA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNN 361 |

\* \* \*
 \* \*

| 690  | 1F (11-1) 790+790+700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 5 | 22           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| 700  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 23           |
| ,,,, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COK 5 | 51           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COK   | 25           |
|      | 47 $11$ $600$ $17$ $17$ $17$ $17$ $11$ $11$ $11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRIM  | 2.4          |
|      | 1 = (1 + EU + 1) CM(N + 1) = CM(R + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 25           |
| 710  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRN   | 121          |
|      | GO TO 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 5 | 20           |
| 720  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRKS  | 29           |
|      | DO 780 K = 1, NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 5 | 530          |
|      | 00 750 F = 1+ NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 5 | 531          |
|      | ANITIA KA NI B DOLYTXXCH. IL ANZCIA KA MI. KA ANITA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CeK 5 | 3Ž           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 33           |
|      | 1 TE (AN) (1, K, N) (1, 730,750,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COK   |              |
| 0    | 15 (MAILTER TO TO TO TO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COK   | 5            |
| /30  | IF LARCEDO I// PEUF/DOFFED M 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 35           |
| 740  | ANI(13, N, I) = ANI(13, N, I) + 10 + T(ANI(1, N, M))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRN 3 | 30           |
|      | 1 #ALUGIO(XX(NIG, 1))/ANY(1, K, NIB))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAN   | 131          |
| 750  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRN   | 30           |
| -    | IF (AN1(13, K+ I)) EQ(K+ I) = AN1(13, K+ I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRM   | 539          |
| Č    | EG EGUIVALENT 18-KIP APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 5 | 540          |
|      | IF (I-1) 760+760+770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK   | 541          |
| c    | CM CUMULATIVE EQUIVALENT TR-KIP APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK . | 142          |
| 760  | $C_{u}(K + 1) = FG(K + 1) + Cu(K + 12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRKS  | <b>;43</b>   |
|      | GO TO 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK 5 | 44           |
| 770  | CM(K+ T) = FQ(K+ T)+CM(K+ T-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK   | 45           |
| 700  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   |              |
| 700  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CoK   | 47           |
|      | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COK # | A B          |
| ç    | ENTITIE CUTVING AT B ODD TOATSONG IND CUMULATING ODD TOATTONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK   |              |
| Ç    | PRINT ECOT ID-RIF APPLICATIONS AND CONCLATIVE APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COK . | 1 <b>1</b> 1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 20           |
|      | PHINI 1470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRN   | 21           |
|      | PRINT 1460, $(MAT(R+1), (CM(R, 1), I = JJ, J), K = 1, (RS)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHA   | 552          |
| ć    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 53           |
| ç    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK   | 554          |
| C    | DETERMINE STRAIN CORRESPONDING T <u>o</u> cumulative 18-kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRN   | 555          |
| С    | A <sup>3</sup> LE APPLICATIONS AND DESIGN VERTICAL STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK   | i56          |
| č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 557          |
|      | PRINT 1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK   | 558          |
|      | D0 920 K = 1, NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 5 | 59           |
|      | t. +LL = 1 019 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK   | 60           |
|      | IF (I_I) 800-800-850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Če K  | 61           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHK   | 42           |
| mų Q | TF / TT_11 910.910.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CPK   | 41           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK - |              |
| al o | S(FRIG(]* K+ ]) = V+V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COK   | 204          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 44           |
| 820  | IT (CM(K, 12)) 830,840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LKN 5 | 000          |
| A30  | $SIMAIN(1+K_{0},1)=0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHN 5 |              |
|      | GU TO BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK   | 00           |
| 840  | STRAIN(1 + K + 1) = POLY(CM(K + 12) + AN2(1 + K + N18) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRM   | 569          |
|      | 1 K. AN3(I, K. N18))-(ARS(AN2(I. K. N18)-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK   | 570          |
|      | 2 *NU(K+1)*AN3(I+ K, N18))/E(K+1+ 1))*100+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK   | 371          |
|      | GO TO BEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK   | 72           |
| 850  | 1F (ČM(K. I-1)) 860.860.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK   | ;73          |
| 860  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 74           |
| 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 75           |
| 674  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK   | 76           |
| 010  | $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_4$ $\pi_5$ $\pi_4$ | CRK - |              |
|      | 1 N/ AN311 N/ MIB// (ABSIAN211 N/ MB/22+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |              |
|      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHR   | 578          |
| 880  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CB. 1 |              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |

• • 3 • • • • • •

|       | IF (CH)     | K. [1] 804-804-000                                                       |            |     |              |                |
|-------|-------------|--------------------------------------------------------------------------|------------|-----|--------------|----------------|
| 890   | ST          | FAIN(I: K. 3) # 0.0                                                      | CRK        | 580 | 4 <b>5</b> 0 | C <sup>1</sup> |
|       | 60 TO 9     | 10                                                                       | 6 A K      | 281 | r            |                |
| 900   | CONTINU     | Ē                                                                        | CRA        | 502 | r,           | P1             |
|       | ST          | RAIN(I+ K+ 2) * POLY(CH(K, T)+ AN2(T+ K+ N1R)+                           | CRK        | 505 |              | PAINT          |
| 1     |             | K+ AN3(I+ K+ N18))-(ARS(AN2(I+ K+ N18)-2+0                               | CRK        | 585 |              | PRINT          |
| 2     |             | *NU(K+1) *AN3(I. K. N181)/E(K+1. 1)1+100.                                | ČeK        | 586 |              | PHIN           |
| 910   | CONTINU     | E                                                                        | CRK        | 587 |              | PRINT          |
| C _   | <b>-</b>    |                                                                          | CRK        | 588 |              | PRINT          |
| PI    | AIN1 1490.  | MAT(K+1) + (STRAIN(M, K, j) + H = JJ+ J)                                 | CRK        | 589 |              | OATLT          |
| A50   | CONTINU     | E                                                                        | CRK        | 590 |              | PETNT          |
| PI    | PIN 1500    |                                                                          | CRK        | 591 |              | PETAT          |
| FI    | 41M1 1440*  | (MAT(K+1), (STRAIN(M, K, 2), M = JJ, J), K = 1, NS)                      | ÇRK        | 392 | 046          | c              |
|       | 00          |                                                                          | CRK        | 593 |              | G              |
| 5     | PHINE D     | EPIN OF LATERS                                                           | CRK        | 594 | 970          | č              |
| ۳۱    | HIN1 1210+  | ((MAT(I), TMIN(1)); I # 2, NS); MAT(NM)                                  | CRK        | 595 | r            |                |
|       |             |                                                                          | CRK        | 596 | ັ98.)        | FCRMA          |
| . 8   | 12501       | ((DSP(1+ K)+ I = JJ+ J)+ K = 1+ 3)                                       | CRK        | 597 | 993          | FCRMA          |
|       | CALCULA     | IL DEFURMATION                                                           | CRK        | 598 | 1000         | FCRYA          |
|       | DO 925      |                                                                          | ÇRK        | 599 | 1010         | FrauA          |
| 925   |             | FTUT(I) = 9,0                                                            | CRK        | 600 | 1020         | FCRMA          |
|       | 00 320 1    | N # C1 NM                                                                | CRK        | 601 |              | 1              |
|       | I -         | a NNel                                                                   | ÇRK        | 602 | 2            |                |
|       | 050         |                                                                          | CRK        | 603 | 3            | į              |
| 2     | UCF         | DEFORMATION AT PONTH N QUE TO REPETITIONS THROUGH                        | ÇRK        | 604 | 4            | ¥              |
|       | DEEN        | MONIN N<br>DEFORMATIONE AT MANY A DE | CRK        | 605 | 1030         | FCRWA          |
|       | UCFR        | DEPERMATIONS AT MONTH N DUE TO REPITIONS THROUGH                         | CRK        | 604 |              | 1              |
|       | DEco        | AUNIA (NH])<br>ATEECother offuncto procession atem off ment              | CRK        | 607 |              | j              |
|       | DEFC        | CHARGE BETREEN DEFORMATION DEFOREN                                       | CRM        | 608 | 1035         | FCRMA          |
|       | DEFTOR      | TOTAL SUBULATIVE DEFORMATION THROUGH MONTH N                             | CRA        | 60¥ | 1040         | FORMA          |
|       | OLF TO I    | TOTAL COMPLATIVE DEPONMATION                                             | CHK        | 610 | 1050         | FORMA          |
|       | 00 054 H    | K                                                                        | CHK        | 611 | 1066         | FCRMA          |
|       | IF (NN      | $FQ_{1} = 0$ (FTDT(K) = A A                                              | CHN        | 612 |              | L              |
|       |             | z = z, $z = 101$ (K) = 0.0                                               | CRN        | 613 | 1070         | FCRMA          |
|       | THENCOM     | THEORETICAL THICKNESS OF SUBCRADE DASCO ON                               | CHA        | 614 | 1080         | FCRHA          |
|       | - Traciller | VERTICAL DISDLACEVENT, DESCOUS DATIO                                     | 0.07       | 912 | 1090         | FCRMA          |
|       |             | FLASTER MARINES, MERTER, AND RADING TOPPE                                | CRA        | 610 | 1            | ۱              |
|       |             | CLASTIC HUDDLOST VERTICAL AND HAVIAL STRESS ***                          | CHK        | 617 | 1100         | FCR#           |
|       | IF (T .F    | FOR NS) THININN & ASSIDSDIR. INFERNME RELIDEDIR.                         | CHN        | 618 | 1110         | FCRMA          |
| 1     |             | Ing. (BhilikianSofr                                                      | 0.07       | 014 | 1120         | FCRMA          |
| •     | ESP (HONI   | THE TY VALUE AT SUDARADE DUE TO 19 KTD LOAD                              | CHN        | 620 | 1130         | FCRMA          |
|       | par fuore   | I = 1 VERTICA, DISCLARENENT                                              | CHA        | 221 | 1140         | FCRMA          |
|       |             | I a 3 VEDITCAL STORES                                                    | CRN<br>CPK | 622 | 1120         | <b>FCRMA</b>   |
|       |             |                                                                          | C RA       | 623 | 1160         | FCRMA          |
|       |             | - J HEURE SINESS                                                         | 000        | 629 | 11/0         | FCRUM          |
|       | DEF         | F(K. I) # STRAIN(K. I. 2) #THIN(HN)/100.                                 | CRK CRK    | 627 | -            | 1              |
|       | DEF         | FN(K. T) = STRATNIK, TA STATNINNI/NO.                                    | - 04       | 620 |              | :<br>          |
|       | 1F (K-1)    | 940.940.930                                                              | Č ok       | 22/ | 1140         | FCRMA          |
| 930   | CONTINUE    |                                                                          | CRK        | 964 | 1230         | FCRMA          |
|       | OFF         | FD(K. 1) = OFF(K. 1)+OFFK(K. 1)                                          | CRK        | 430 | 1510         | r ump m        |
|       | DEF         | C(K+ 1) = DFFC(K+1+ 1)+DFFD(K+ 1)                                        | CRK.       | 431 | 1 7 - 4      | 1<br>E         |
|       | DEF         | TOT(K) = DEFTOT(K)+DEFC(K. 1)                                            | CPK        | 432 | 1220         | rcr."          |
|       | GO TO 95    | 50                                                                       | CRK        | 411 |              |                |
| 940   | CONTINUE    |                                                                          | ČRK        | 414 | 1230         | PCKMA          |
| • • • | DEF         |                                                                          | CoK        | 435 |              | i              |
|       | DEF         | FC(K, 1) = DFFC(12, 1)+DFFD(K 1)                                         | CBK        | 476 | 1532         | CRYA           |
|       | DEF         | FTOT(1) = DEFTOT(1)+DEFC(K. 1)                                           | ČRK        | 417 | 1240         | FURMA          |
|       |             | · · · · · · · · · · · · · · · · · · ·                                    | <b>V</b>   | 1.0 | 1250         | P CR#A         |

| 950  | CUNT          | INUE Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK I       | 138  |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
|      | د بر النار ال | T DECADENTION AT MONTH N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÖK .       | 440  |
| r.   | COL T IS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>0</b> K | 441  |
|      | NHINI 13      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |
|      | BEINI 14      | 960 (MAILL+1) + (DEFIX+ 1) + K = JJ+ J+ I = 1+ NS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 240  |
|      | PRINT 15      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HP         | 643  |
|      | PRINT 14      | 90, $(AT(I+1))$ , (DEFN(K, I), K = JJ, J) = I = 10 NS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rh         |      |
|      | PRINT 15      | 50 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RK         | 645  |
|      | PRINT 14      | 90, (MAT(I+1); (DEFD(K; I), K = JJ; J); I = 1; NS) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RK         | 646  |
|      | PAINT 15      | 60 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RK         | 647  |
|      | PRINT 14      | $90_{*}$ (MAT(1+1), (DEFC(K, I), $\tilde{K} = JJ_{*}J_{*}$ ) $\tilde{I} = 1_{*}NS_{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 648  |
|      | PRINT 15      | 76, UEFTOT(K), K = JJ, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RK         | 649  |
| 960  | CONT          | TNDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RK         | 650  |
| -    | Go T          | 0 10 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gK I       | 651  |
| 970  | CONT          | TNUE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK .       | 652  |
|      |               | c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RK         | 653  |
| ້ດຄະ | FranAT        | (8410)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 654  |
| 660  | FCOWAT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RK         | 455  |
|      | FCONAT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OK         |      |
| 1000 | FURFAI        | Carlos arlesse areas av sedio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - K        | 457  |
| 1010 | CHUC I        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ox .       | 458  |
| 1020 | FUNMAI        | 1 3171, TOK WARLE LOAD ALLE LOAD THE H & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |
|      | 1             | *INITIAL * C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.77 |
|      | 2             | VI 10X WARGEININS MEANININS PRESSURE AALW C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -          | 60 Y |
|      | 3             | +E Appl + / C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rh         | 801  |
|      | 4             | ( 9X, F4+0, e -e, F4+0, 5X, F7+2, 6X, F6+2, 6X, F7+0)) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HR ·       | 68C  |
| 1030 | FCRWAT        | ( 3(/)+15X#LOAD DISTRIBUTION FACTOR+ RATIO+ 10X+F8+2 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 663  |
|      | 1             | / +15X*LANE DISTRIBUTION FACTOR, RATIO+ 10X+F8+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RK         | 664  |
|      | 3             | / +15X+DESIGN PERIOD+ YEARS + 10X+F8+0) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RK         | 665  |
| 1035 | FCRMAT        | ( 15X*TRAFFIC GROWTH RATE, RATIO + 10X,F8,2 ) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RK         | 666  |
| 1040 | FORMAT        | (A10+ F10+0+ 2F5+0+ 2F10+0) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RK         | 667  |
| 1050 | FORMAT        | (A10, F10.0, 2F5.0, 5F10.0 / (8F10.0)) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RK.        | 558  |
| 1066 | FCRMAT        | ( 3 (2), 30X, WATERIAL PARAMETERS, 22 10X-MATERIAL, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RK         | 669  |
|      |               | $11\times 5(A10+1\times 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RK I       | 670  |
| 1070 | FCRMAT        | (10X+TFICKNESS+ 5X+ 4F11+3) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RK         | 671  |
| 1080 | FCRMAT        | (10X+PCISSONS RATIO* SFIT.2) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RK         | 672  |
| 1090 | FCRMAT        | ( (()) IN TYARIATIONS OF F VALUES IN SPACE AND TIME" C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 673  |
|      | 1             | /. 10X *MATERIAL CONF * 4410 / 22X+ 6410/) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RK         | 674  |
| 1100 | FrouAt        | ( 9x. A10. F5.2. F8.0. SF10.0/ 19x. 6F10.0 ) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gK .       | 675  |
| 1110 | FCRMAT        | 1 20X + FANA FANA 5510-0 - 19X- 6510-0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RK I       | 676  |
| 1120 | ECRHAT        | 1 SAN ALON #MEAN # FB.0. SFL0.0 / 22X+ 6FL0.0 1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RK         | 477  |
| 1130 | FCDVAT        | $I \rightarrow I = I = I = I = I = I = I = I = I = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9K         | A 78 |
| 1140 | FCRWAT        | (10X) = (0) = (0) = (11) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = ( | RK         | A79  |
| 1150 | FCOMAT        | ( 10X =CONFTUENCE   EVEL = E(E0.3-31)) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RK         | 680  |
| 1140 | ECOMAT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DK         | 4.81 |
| 1100 | Fen AT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nK.        | 482  |
| 1710 | LCHOW!        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DK .       | 403  |
|      | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or .       | 404  |
|      | C             | 7, 30A TAND CONFIDENCE LEVEL THE TANK (71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 105  |
| 1140 | FCRMAI        | (IDA- LOAD DEPTH - INCHES TANGENTIAL STRAIN-/) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | - 64 |
| 1230 | FCRMAI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF.        | 407  |
| 1210 | FURMA         | C 31710 CJR MONING 128 THAFFIC PERCENTAGE /12 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 001  |
|      | 1             | ( /+ 20X+ A10, 15A+ F10+2), // 25X *SUP* 17X+F10+2 ) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 689  |
| 1220 | FCRUAT        | (4(/), DOX *N TABLE - ACTUAL* // 10X *LOAD YEAR * C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RK         | 689  |
|      | 1             | N = HCNTHLY+ /} C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RK         | 690  |
| 1230 | FCRMAT        | (41/) + 50X + TABLE - ACTUAL / 46X +FROM TRAFFIC + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RK         | 691  |
|      | 1             | *CATA INPUT* // 15×+ 6410/20×+6410) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RK         | 692  |
| 1235 | FCRVAT        | ( 20x+; 0AD+ F5, 0 ) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RK         | 69Ĵ  |
| 1240 | FCRMAT        | ( /. 10X. F3.0) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RK         | 694  |
| 1250 | FCR#AT        | (10X+ F3+0+ 5X+ 13+ 6X+ F10.0 ) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RK         | 695  |
|      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |

· · ·

| 1260  | FORMA     | ( 18X, 12, 4X, 4F10.2 / 2nX, 4F10.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 496  |
|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 1270  | FODMA     | 1 ( A8, 12F6.n )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ČoK        | Å97  |
| 1280  | FCRMA'    | ( 10× A0+ F7.0, 5F10.0 / 20× 6F10.0 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK.       | 894  |
| 1290  | FCRMA     | ( 4(/), SOX "N TABLE - THEORETICAL # // 10X +LOAN+ 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ČRK        | 499  |
| ີ 1   |           | +CONFIDENCES SY OMEAN VALUES / 197 +LEVELA F6.3/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CoK        | 700  |
| 1200  | FORMA     | (A(Z) 50X N TABLE & THEORETICAL Z/15X UDAD-FE-A/10X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CBK        | 7.01 |
| 1200  | 1.040.000 | TONE 4 TA THOP ALL TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON        | 104  |
| 1210  | FODMA     | I I I I I E TAT DAIU / IUA "LEVEL" /AT EAID/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COK        | 102  |
| 1320  | E OBula   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COK.       | 703  |
| 1330  | FORMA     | $ \begin{array}{c} \left( 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRA        | 104  |
| 1340  | FORMA     | 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRN<br>CRK | 703  |
| 1340  | F URMM.   | I TO A TO A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.R.C.     | 700  |
|       | FARMA     | $100 \times 12$ FG $200 \times 100  \times 100 \times 100 \times 1000 \times 100 \times 100 \times 100 \times 100 \times 100 \times $ | CHA        | 101  |
| 1300  | FCHMM     | (10A)12, FO. 312X, 6E10.3, /24X, 6E10.3/14X4MEAN43X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHA        | 100  |
| 1.20  |           | 6E10+3+ / 2*X+ 6E10+3 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 709  |
| 1310  | FGRMA     | I LA(7) TOX "MONTH CONF (N7N) LOG(N7N) LOG SD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHA        | 710  |
|       |           | 6X *K* 7X *A* 7X *CI* / )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK        | 711  |
| 1300  | FCRMA     | ( 10X, 13, F8,3, 3E11.3, 3E9.2 / 17X *MEAN*2E11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK        | 115  |
| 1390  | FORMA     | [ (10X+I3+F8+4+F6+0+2(10X+++)+AX++++2F9+0/17X++CAN+F6+0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 713  |
| 1     |           | 10X*~*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 714  |
| 1400  | FCRMA     | <pre>( 4(/), 15% #LOAD* 5% #MATERIAL* BX *VERTICAL STRESS*</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÇRK        | 715  |
| 1     |           | 7X *TANGENTIAL STRESS* / 40X, 2(*TOP* 7X *BOTTOM*7X))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ÇRK        | 716  |
| 1410  | FORMA     | [ (2 {3F10.0) }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK        | 717  |
| 1420  | FORMA     | [ (1P1+3(/)+23X, +RAUIAL+ 4X, 2(++A10++2x)/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK        | 718  |
| 1     | L         | 7X; *LOAD WATERIAL PRESSURE*2X; 2(+VERTICAL *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK        | 719  |
| 2     | 2         | *STRESS RADIAL*2X)/ 23X *(INPUT)* 3X+ 2(#HEAN* 5X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK        | 720  |
| 3     | 1         | +CESIGN STRESS+2x)//F10.0, 41/+11X+ A10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 721  |
|       | •         | 11X, 3F8,3, 1X, 3F8,3 ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 722  |
| 1421  | FORMA     | (11X+ A10+ F8.3+ 3X+ 3F8.3+ 1X+ 3F8.3/ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 723  |
| 1430  | FORMA     | [ { { { / } } , 9x, 3 { **Alo**2x)/* 9x, 3 (*VER*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK        | 724  |
| 1     | l         | +TICAL STRESS RADIAL+2×1/, 9X+ 3(+MEAN+ 5X+DESIGN+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK        | 725  |
|       | 2         | STRESS+ 2x) // 4( 8X, 3F8,3, 1X, 3F8,3, 1X, 3F8,3/))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 726  |
| 1440  | FORMA     | T (4(/), 9X, #+++++A10#+++++ / 9X #VERTICAL STRESS#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK        | 727  |
| 3     | L         | + RADIAL+ / 9X +MEAN+ 5X +DESIGN STRESS#//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK        | 728  |
|       | 2         | 4 (8X+3F8+3/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK        | 729  |
| 1450  | FORMA     | T (1H1+4(/)+5x+ +YEAR+13+/15x+ 6(A10+1X)/+ 5x+H1+LD-REPT+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK        | 730  |
| 1460  | FORMA     | t ( 5% A10, 6(F11.3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK        | 731  |
| 1470  | FORMA     | Ţ ¿ŠX÷CUMPÚLATĮVĒ÷)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK        | 732  |
| 1480  | FORMA     | T ( 5X+ +STRAIN TO BEGINNING OF MONTH +)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 733  |
| 1490  | FORMA     | T ( 5X, A10, 6F,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ČRK        | 724  |
| 1500  | FORMA     | T - 5X. STRAIN THROUGH NONTHAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK        | 735  |
| 1510  | FORMA     | T (5X+ +0EPTH++ 5 ( / 5X+ A10+ F11+1 ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK        | 736  |
| \$520 | FORMA     | T (STAVERT . DSP. +AF11+7/ STARS AF11+7/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ČRK        | 737  |
|       | 1         | SX+R STRESS +AF11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK        | 738  |
| 1530  | FORMA     | T ( 5% +DEFORMATION AT NONTH N# )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK        | 779  |
|       | FCRMA     | (EX. +DEFORMATION OUF TO REDITIONS THROUGH MONTH (N-1)+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK        | 7.0  |
| 1550  | FORMA     | 1 5% + DEFORMATION AT WONTH N _ OFFORMATION AT WONTH N=1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK        | 741  |
|       | 1         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK        | 742  |
| 1560  | FCRMA     | T ( 5X) CUMBLATIVE DEFORMATION THROUGH MONTH NO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK        | 743  |
| 1570  | FCRHA     | 1 4 5Ks #TOTAL CUMULATIVE DEFORMATION RUT DEPTHEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK        | 744  |
|       | 1         | 151. AE11 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coll       | 745  |
|       | FNO       | ***** ********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK        | 746  |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 140  |

|           | SUBACUTINE LAYER (IK. 17)                                         | CRK 747 |
|-----------|-------------------------------------------------------------------|---------|
|           | CCMHCN /LAY/ EE(5+ 12) . V(5) . NS. THIN(5) . IN. NL. A(20).      | CRK 748 |
|           | 1 TIRF (20) + EA (5. 12) + DRCB (5) + 0708 (5) + RD(5) + EH (5) + | CRK 749 |
|           | 2 DRC(5)                                                          | CRK 750 |
|           | COMMEN /PRIN/ ANILIS, 5, 201, AN2(13, 5, 201, AN3(13, 5, 20).     | CRK 751 |
|           | 1 DSP(12+ 3) + N18+ ( 040(20) + MAT(8) - MONTH() )                | CRK 752 |
|           | OTMENSION 72(11), F/S), H(A), HH/A, A7/ADA, AJ/ADA                | CoX 753 |
|           |                                                                   | COX TEA |
|           | AVED DEES CALCULATIONS FOR FLOW DEDTH. MEAN AND                   | CON 124 |
| Š         | CONFIDENCE VALUES OF FLASTIC MODILIAS STATEMENT                   | CPK TEA |
| L<br>A    | CR THENE HEATS OF ELEVILY HOUGEDAY STORE ON                       |         |
| C         | THEETE CHINS AND FIRELT FOR EACH COAD GROUP                       |         |
| · · · ·   | N T NIPI                                                          | CHN 758 |
| Ç         |                                                                   | CRN 737 |
|           |                                                                   | CHN 760 |
|           | IIN = 40                                                          | CRN 761 |
|           | 1104 # 11044                                                      | CHN 762 |
|           | 10220 = 1. NL                                                     | CRK 763 |
|           | 1F (IZ-1) 5# IN 5                                                 | CRK 764 |
| 1         | 1F (IK-1) 2+ 2+ 3                                                 | CRK 765 |
| 2         | PRIAT 240, LOAD (M)                                               | CRK 766 |
|           | GO TO 5                                                           | CRK 767 |
| Э         | PRINT 230. LOAD(M). THIN(1). PONTH                                | CRK 768 |
| 5         | MT = M                                                            | CRK 769 |
|           |                                                                   | CRK 770 |
|           | ARF = AR+TIRE(W)                                                  | CRK 771 |
|           | 22(1) = THIN(1)                                                   | CRK 772 |
| c **      | ADJUST LAVER DEPTHS                                               | CRK 773 |
| •         | HH(1) = TMIN(1)                                                   | CRK 774 |
|           | H(1) = HH(1)                                                      | CRK 775 |
|           | $C0 10 1 = 2 \cdot N$                                             | CRK 776 |
|           | HH(1) = THIN(1)                                                   | CRK 777 |
| 10        | H(I) = H(I-1) + H(I)                                              | CpK 778 |
|           |                                                                   | CRK 779 |
| 20        | 77(1) = 0(1)                                                      | CRK 780 |
| ~ •       | $P_{0}$ 220 $I_{0}$ = 1, 2                                        | CDK 781 |
|           |                                                                   | CRK 797 |
|           |                                                                   | COK YOT |
|           |                                                                   | COK 784 |
|           |                                                                   | CDK 104 |
|           |                                                                   | CHA 105 |
| 34        |                                                                   |         |
| 30        | E(1) = EE(1 = AH)<br>G- Y- R                                      | CAN 787 |
|           |                                                                   | CRN 788 |
| 40<br>5 4 |                                                                   | CKU 194 |
| 20        | AA AD T = T1 W2                                                   | CHN 790 |
| 6 U       | ELLI = EALI MAI                                                   | CHE 791 |
| 10        |                                                                   | CRN 792 |
|           |                                                                   | CHN 793 |
|           |                                                                   | CHK 794 |
|           | TZ = AUS(H(J)-ZZ(1))                                              | CRK 795 |
|           | The fisher of all go age ad                                       | CRK 796 |
| A0        | ZZ(I) = -H(J)                                                     | CRK 797 |
| 90        | LONTINUE                                                          | CRK 798 |
| -         | $1r  (MN + EQ, Q_1 + AND, (1Z + GT, 1_3) + ZZ(1) = -ZZ(1)$        | CRK 799 |
| c **      | CALCULATE THE PARTITION **                                        | CRK 900 |
|           | CALL PART INTEST. AZ. ITN. AR)                                    | CRK 801 |
| C **      | CALCULATE THE COEFFICIENTS                                        | CRK 802 |
| -         | $CO 100 I = 1 \times 17N4$                                        | CRK 803 |
|           | jT = I                                                            | CRK 804 |
|           |                                                                   |         |

.

|        | P = AZ(I)                                                    | CoK 805 |
|--------|--------------------------------------------------------------|---------|
|        | CALL COEE (IT+ N+ E+ V+ H+ NS+ P)                            | CRK ADS |
|        |                                                              | CON 887 |
|        | CALL BESSEL (1. PA. V)                                       | Cok Bos |
|        | $A_{1}(T) = Y$                                               | COX 000 |
| 100    |                                                              | CHA 807 |
| 100    |                                                              | CHP 810 |
|        |                                                              | CHK 011 |
|        | 121 = 0                                                      | CRK 812 |
| ¢ . ** | START ON A NEW Z                                             | CRK 813 |
| 110    | 12T = 12T + 1                                                | CRK 914 |
|        | lf (IZT-IZ) 120,120,200                                      | CRK 815 |
| 120    | Z # ABS(2Z(121))                                             | CRK A16 |
| c *    | * FIND THE LAYER CONTATNITUG 7 ##                            | Cox a17 |
| -      | 772 # 0.0                                                    |         |
|        |                                                              |         |
|        |                                                              | CKP 814 |
|        |                                                              | CHW 950 |
|        | 17 (2-43)/ 130,140,140                                       | CHA BZI |
| 130    | CONTINUE                                                     | CRK 822 |
|        |                                                              | CRK 823 |
|        | GU TO 160                                                    | CRK 824 |
| 140    | i_ # J+1                                                     | CRK 825 |
|        | · IF (22(12T)) 150,160,160                                   | CRK 825 |
| 150    | j = j                                                        | CRK 827 |
| -      | TZZ = 1+0                                                    | CRK ANR |
| 160    | CONTINUE                                                     | COK 939 |
|        | CALL CALCIN (V. F. NTEST, APP, 1TH, 17, 7, P. A.I. TV. T7.   | CPK and |
|        | THE METALS AD. TTA MY AT THE ACT TO AT ANY AT                |         |
|        | 1 107 m 1 10 ANT 1227 APT BIT 1218 MMS 121                   |         |
| 170    |                                                              | CHN 836 |
| 1.0    |                                                              | CHN 833 |
|        | 17 (122) 190+190+180                                         | CRK 834 |
| 180    | 22(121) = -22(121)                                           | CRK 835 |
| ~      | $1^{p}$ (12 + Eq. 127) Nx = 1                                | CRK 836 |
| C      | NA # 1 SUBGRADE CALCULATIONS                                 | CRK 837 |
|        | 127 = 127 - 1                                                | CRK 838 |
| 190    | CONTINUE                                                     | CRK 839 |
|        | 60 TO 110                                                    | CRK 840 |
| 200    | CONTINUE                                                     | CRK AA1 |
| 210    | CONTINUE                                                     | CRK PAD |
| 220    | CONTINUE                                                     | COK DAT |
|        | BE TIRN                                                      | CDK 843 |
| - 20   | HEIDING<br>Foodat / Alla, for attacental protocol, int alora | UNN 244 |
| 630    | FUNDER A STATE OVA TANGENIAL DIRAINTY 134 TUADE              | CHR 843 |
|        | 1                                                            | CRK 846 |
| 540    | POHMAS ( LUA) FD+0 )                                         | CRK 847 |
|        | END                                                          | CRK 648 |

· · ·

• •

|              | SUBHOUTINE CALCIN (V, E, NTEST, ARP+ ITN+,AZ+ Z+ R+ AJ+ IK+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK 849 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|              | 1 IZ+ IM+ MM+ L+ AR+ TZZ+ NX+ M+ ITZ+ MN+ IE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK ASU |
| CCAL         | CIN 44844SUBHCUTINE CALCIN - N-LAYER ELASTIC SYSTEM ######                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHK 851 |
|              | CCMMCN /COECAL/ A(400+ 5)+ 8(400+ 5)+ C(400+ 5)+ D(400+ 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÇRK 852 |
|              | CIMENSION E(5) + V(5) + AZ(400) + AJ(400) + TEST(11) + W(4) + ANS(12) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK 853 |
|              | 1 \$4.5(12)11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 854 |
|              | COMMON (CALL IN, INX/20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK 855 |
|              | CONTRACTOR AND THE CONTRACTOR F. S. ANDINA F. SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK ASA |
|              | COMPANY FRANK ALL THE CARGE AND ALL THE ALL AND ALL AN | CRK AST |
|              | I DEVISE THE REPORT OF THE CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COK ALL |
|              | REAL COAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 10           | W111 = U+34705483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|              | w(2) # 0+05214515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRA 800 |
|              | W(3) = W(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHW 801 |
|              | W(4) = W(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CKK 462 |
|              | VL = 2.0*V(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 863 |
|              | EL = (1 + 0 + V(L)) / E(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK 864 |
|              | VL1 = 1.0-VL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 965 |
|              | CSZ = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 866 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 867 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 868 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COK 969 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CPK oTA |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cur 814 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRN 071 |
|              | NISI # NIEST*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHN 872 |
|              | 175 # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHK 873 |
|              | DC 80 I # 1+ ITN _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK 874 |
| c            | INITIALIZE THE SUB-INTEGRALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 875 |
|              | ₽5Z # 0+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 876 |
|              | AST = 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 877 |
|              | 855 = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 878 |
|              | RTE . 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK AT9 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 980 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 081 |
| ī.           | enuni II. Tuć čuga Triteka i ć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COK 883 |
| C            | CUMPUTE THE SUBTILEGRALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CON AND |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.X 084 |
|              | CO 20 3 & I. •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | URN 80% |
|              | J1 # K+J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHN 882 |
|              | P = AZ(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK 886 |
|              | EP # EXP(P#Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 887 |
|              | $T_1 = B(J_1, L) + EP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK 888 |
|              | $T_2 = D(J_1 + L)/EP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK 889 |
|              | T1F = T1+T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK 890 |
|              | T1 = T1 - T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK 891 |
|              | T1 = (A(J)+ L)+R(J)+ L)#Z)#FP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 892 |
|              | T5 . (r(J], L), D(J], 1, +7)/r0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK A93 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 894 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 895 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COK 896 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COX 007 |
| С            | SHECTHE MUNITUE FOR R & ZENU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 080 897 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHA 898 |
|              | R54 = R54+WA=PP+(V11=T1P=T2M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK 899 |
|              | ROM = ROM+WA*EL+P+(2,0+VL1+T1M-T2P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK 900 |
|              | RST = RST+WARPP#((VL+0.5)aTjP+0.5aT2M]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK 901 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 992 |
| 20           | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CgK 903 |
| - <u>-</u> - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK 904 |
| E            | SF = {AZ (K+4)-47 (K+1)}/1+7230706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK 905 |
|              | nci z nci activitati activitati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK BAA |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

262

-

, •

• •

.

|     | CDI = CDI+HSI#SF                              | CRK 907  |     | RETURN                                                                           |
|-----|-----------------------------------------------|----------|-----|----------------------------------------------------------------------------------|
|     |                                               | CRK 908  | с   |                                                                                  |
|     | CIH = CIN+HTH+SF                              | CRK 909  | с   | PART TWO                                                                         |
|     | COM # COM+ROM#SK                              | CRK 910  | 176 | CONTINUÉ                                                                         |
|     | CHL = CHU+RHU+SF                              | CRK 911  | с   |                                                                                  |
|     | $RSZ = 2 \cdot 0 = RSZ = AR \cdot SF$         | CRK 912  | ċ   |                                                                                  |
|     | TESTH = ABS(RSZ)-10+0++(-4)                   | CRK 913  | •   |                                                                                  |
|     | IF (ITS=NTS1) 30.40.40                        | CRK 914  |     |                                                                                  |
| 30  | CONTINUE                                      | ČRK ŠÍS  |     | 1160 = 116 = 016                                                                 |
|     | TEST(ITS) # TESTH                             | CRK 916  |     | AND THE TALL BY A ADDING THE MULTURES                                            |
|     |                                               | CPK 017  |     | Anglong size $\mu$ ) = $\mu \sigma s(\mu r_{1} (z_{1} + r_{1} + c_{2} - r_{2}))$ |
|     |                                               | CDX 018  | ç   | IN EITERIGHIC                                                                    |
|     |                                               | CRN 410  | С   | IN # ) NC FONTHLY VARIATIONS ON E                                                |
| • U |                                               | CHR 414  | C   | IN GT 1 MONTHLY VARIATIONS MUST BE ACCUMULATED                                   |
|     | TESTINISTI # TESTH                            | CHK 920  | ç   | MM INDEX VARYING FROM 1 TO IK                                                    |
|     | DO 70 J # 1, NTESI                            | CRK 921  | с   | MM = IK CALCULATIONS COMPLETE                                                    |
|     | IF (TESTH-TESI(J)) 50+60+60                   | CRK 922  | С   | IZ NUMBER OF LAYERS MINUS j                                                      |
| 50  | CONTINUE                                      | CRK 923  |     | IF ((NX .EQ. 1) .AND. (M .EQ. N10)) 60 TO 180                                    |
|     | TESTM = TEST(J)                               | CRK 924  |     | GO 10 190                                                                        |
| 60  | CONTINUE                                      | CRK 925  | 180 | DSP(MM+ 1) = COM                                                                 |
|     | TEST(J) # TEST(J+1)                           | CRK 926  |     | DSF (MM+ 2) = CSZ                                                                |
| 70  | CONTINUE                                      | CRK 927  |     | DSE (uus 3) = CSP                                                                |
|     | IF (TFSTH) 90,90,80                           | CRK 928  | 190 | CONTINUE                                                                         |
| 80  | CONTINUE                                      | CRK 929  |     | CSP MONTHE TI VALUE AT SUBGRADE DUE TO IR-KTP LOAD                               |
| 90  | CSZ # CSZ#ADP                                 | CPK 010  | 2   | T - VEDITCAL ACEMENT                                                             |
| ••  |                                               | CDK 031  | 5   | I T I TENTIONE UISPLACEMENT                                                      |
|     | Car - Car-Mer                                 | C. K 032 | ç   |                                                                                  |
|     | ALL       | COX 033  | č   | T + 3 HAUTAL SIRESS                                                              |
|     | Lan - Canesar<br>and a south of               |          | C   |                                                                                  |
|     |                                               | URN 934  |     | 14 (44-1K) 500+500                                                               |
|     |                                               | CRN 932  | 200 | CONTINUE                                                                         |
|     | BSIS = Caz+Cat+CSR                            | CHK 936  | с   |                                                                                  |
|     | RSTN = (CSR+V(L) = (CST+CSZ))/E(L)            | CRK 937  | с   | NO MONTHLY VARIATIONS IN ELASTIC MODULUS                                         |
| -   | TSIN # (CSI=V(L)*(CSR+CSZ))/E(L)              | CHK 938  |     | IF (IK-1) 210:210:260                                                            |
| Ç   | STRESSES CSZ VERTICAL CSY TANGENTIAL          | CRK 939  | >10 | WN # MN+1                                                                        |
| ¢   | CSR RADIAL CTR SHEAR BSTS BULK                | CRK 940  |     | ANS (MN) # C5Z                                                                   |
| С   | STRAINS RSTN RADIAL TSTN TANGENTIAL           | CRK 941  |     | IF (NX-1) 220+250+220                                                            |
| ċ   | CHU SHEAR                                     | CRK 942  | 220 | CONTINUE                                                                         |
| č   | CON VERTICAL DISPLACEMENT                     | CRK 943  |     | ANS (4N+2) = CSR                                                                 |
| -   | IF (12-1) 100+100+170                         | CRK 944  |     | 1F (HN-2) 230-240-240                                                            |
| c   |                                               | CRK 945  | 230 | RE TURN                                                                          |
| č   | IZ = 1 PART ONE CRACKING INNEX                | CRK 946  | 740 | WN = 0                                                                           |
| ž   | IZ NOT L PART THO BUT DEDTH                   | C8K 947  |     | PGINT 350. (040(M), MATITZ), (445(1), T # 1, 4)                                  |
| X   | Resolution and the start filler she           | COK 9A8  |     |                                                                                  |
|     | ARIC (MAL. B. T.C.T.)                         | COK DAS  | -   |                                                                                  |
| 100 | ANGLUND - ISIN                                |          | ۲.  | ALS(1) & UPDTICAL STORES AT TOD OF LAVED                                         |
|     | 1° (1221 120+120+110                          | CRK 430  | C C | ANDIS - VERILORE SINESS AT THE OF LATER                                          |
| 110 |                                               | CHN 951  | ç   | AND THE MADINE PROPERTY TO A THE MADE                                            |
| 155 | CONTINUE                                      | CHN 432  | C   | ANDIEL - HADIAL SINESS AT TOP OF LATER                                           |
|     | TL (MM-IV) 13041404140                        | UKN 933  | c   | ANSIS) - AT BUILDM OF LATER                                                      |
| 130 | NEIONN                                        | CHR 954  | C   |                                                                                  |
| 140 | IM = IM+T                                     | CHK 955  | с   | SUBGRADE INC BOTTON OF LATER)                                                    |
|     | CALL_IOBIN (6HWAITER, 2. ANS(1), IM, IDX(IW)) | CRK 956  | 250 | ANS (MN+1) = CSR                                                                 |
|     | IF (IM-1) 150+150+155                         | CRK 957  |     | 4N # 0                                                                           |
| 150 | IP (IE+EQ+1) PRINT 330+ 2+ ANS(1)             | CRK 958  |     | PRINT 360. LOAD(M), MAT(ITZ+1), ANS(3), ANS(2)                                   |
|     | IF (IE.NE.1) PRINT 335. 2. ANS(),             | CRK 959  |     | RETURN                                                                           |
|     | RETURN                                        | CRK 968  | r   |                                                                                  |
| 155 | IF (IE-1) 160, 165                            | CRK 961  | ŕ   |                                                                                  |
| 168 | PRINT 340, ANS                                | CRK 962  | è   | PONTHEY VARIATIONS IN ELASTIC MONULUS                                            |
|     | RETURN                                        | CRK 963  | 260 | 1F (MH-1) 27012701280                                                            |
| 165 | PRINT 345. ANS                                | CRK 964  | r   | FIRST MONTH INITIAL TRATION                                                      |
|     |                                               |          | ~   | · · · · · · · · · · · · · · · · · · ·                                            |

\*

•

• • •

263

• •

,

,

•

.

| 278       II = 0.       CMAID23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                    |              |        |                                                                                     |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------|--------------|--------|-------------------------------------------------------------------------------------|------------|
| 280       II = 11-1       CAK 1024       ()76/55(0* art 60) i #3(10) art. art. art. B (LAPIC system ******       CAK 1024         xANS[11, Mn] = CSZ       CAK 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270 | II = 0                                                             | CRK1023      |        | SUBSCUTINE FAUT INTET. 57. ITN. 403                                                 | C=K1071    |
| NN = NA-1       CMK (025       C_0AFI       ******5.116-02/1165 PART - 5-LAYEE LASTIC \$YSTEW *****       CMK (025         AASSILL + MASSILL + M                                                                                                 | 280 | II = II+1                                                          | CRK1024      |        | THENSTON AZ (400) + AZ (400)                                                        | CARIOTZ    |
| IN AUSTIL: MULL CS2       CM: 020       C       ** Council: 2600 or J(A) AND JORD. SET UP RAUSS CONSTANTS ** CM: 040         IF (M, FG, L) XAND. (M, H, H) = CSA       CM: 020       D       CM: 020       CM: 020 <t< td=""><td></td><td>HN # HN+1</td><td>CRK1025</td><td>Ç PARI</td><td>******SIBEOUTINE PART - 5-LAYER ELASTIC SYSTEM *****</td><td>CRK1073</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | HN # HN+1                                                          | CRK1025      | Ç PARI | ******SIBEOUTINE PART - 5-LAYER ELASTIC SYSTEM *****                                | CRK1073    |
| IF (MARSIL) MA(1) = 250 (CK105)<br>IF ((11 + 650, 12) + AA, (11) + 250 (CK105)<br>IF ((11 + 650, 12) + AA, (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) + (11) | r   |                                                                    | CRK1026      | . C    | ++ COMPLIE ZEROS OF J1(X) AND JOIX). SET UP GAUSS CONSTANTS                         | ** CRK1074 |
| 1.1       (MALESTIL)       (MALESTIL)       (CRI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | XANSILI, MN) = CSZ                                                 | CRK1027      | 20     | 92(1) = 0.0                                                                         | CRK1075    |
| IF       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6, 12)       (11, +6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | If $(NX \in W_0 \ I) \ XANS(II \in MN + I) = CSR$                  | CRK1028      |        | 92(2) = 1 + 0                                                                       | CRK1076    |
| RET 00       R1144.124.121 AND: INA.124.11) 00 10 200       CR4 031       R2 (0 + 3.831)       CR4 (0 + 3.831)         CONTINUE       CR4 032       S2 (0 + 5.520)       CR4 033       CR4 033       CR4 033       CR4 034       CR4 035         CV       VALUES ARE PRINTED IN BLOCKS OF SIX MONTHS       CR4 033       CR4 033       T = 1/2       CR4 035       CR4 035         00 310 1 = 1 = 121       CR4 035       CR4 035       T = 1/2       CR4 035       CR4 045         00 310 1 = 1 = 121       CR4 035       CR4 035       1 C 3 0 I = 0, 31.0150*51       CR4 045         00 310 1 = 1 = 121       CR4 035       1 C CR4 045       CR4 045       CR4 045         00 310 1 = 1 = 12,1       CR4 035       1 C S 0 I = 0, 31.0150*51       CR4 045         00 30 0 K = 1 + 12, 6       CR4 045       1 C S 0 I = 0, 37.010*51       CR4 045         00 30 0 K = 1 + 12, 6       CR4 041       T = (-2)/2       CR4 045       CR4 045         1 = 0 + 12, 6       CR4 041       T = (-2)/2       CR4 045       CR4 045       CR4 045         300       CONTINUE       CR4 045       CR4 045       CR4 045       CR4 045       CR4 045         1 = 0 + 1       CR4 045       CR4 045       CR4 045       CR4 045       CR4 045       CR4 045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | XANSIII ANNES # CSR<br>TE (//TT EA ISA ANNE (NY PA TIL AN TO TO TO | CRAIOZA      |        | BZ(3) = 2 + 4 + 0 + 8                                                               | CR#1077    |
| 290       R-L UCONTINUE       CRK 1031       8/19 + 5-201       CRK 1031         VALUES ARE PRINTED IN BLOCKS OF SIX MONTHS       CRK 1031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | TA ((11 +CA+ 15) +WAP (WY *CA* 7)) ON IN 540                       | CKN1030      |        | AZ (4) = 3+8317                                                                     | CRK1078    |
| 2:00       CONTINUE       Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 |                                                                    | CK01031      |        | 82(5) = 5.5201                                                                      | CRK1079    |
| VALUES ARE PAINTED IN BLOCKS OF SIX MONTHS       CPR1035       T = 1.0       CPR1035       T = 1.4.4       CPR1035       T = 1.4.7       CPR1035       CPR1035       CPR1035       CPR1035       CPR1035       T = 1.4.7       CPR1035       CPR1045       CPR1045 <td>270</td> <td>CONTINUE</td> <td>CRAIDIC</td> <td></td> <td>BZ(6) # 7.0156</td> <td>CRK1080</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 270 | CONTINUE                                                           | CRAIDIC      |        | BZ(6) # 7.0156                                                                      | CRK1080    |
| 1 = 0       1 = 0       1 = 1/2 + 1/2 + 1/2       CRN 1035       1 = 1/2 + 1/2 + 1/2       CRN 1035         1 = 1/2 + 1/2 + 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2 + 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2       CRN 1037       20       1 = 1/2 + 1/2 + 1/2 + 1/2       CRN 1037         1 = 0 = 1/2 + 1/2 + 1/2       CRN 1041       T0 = 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,   | VALUES ADE ORTATED IN OLOGIA OF ATT MONTUS                         | CREADIN      |        | K = 178+1                                                                           | CRN1081    |
| L         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | THE DESTINATION IN DEDUCTS OF SIX HUNING                           | CKU1034      |        | CO 20 I = 7. K, 2                                                                   | CRN 1082   |
| 121       121       121       121       121       121       121       123       121       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123       123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L   | 0                                                                  | CRELADA      |        | 1 = 1/2                                                                             | CHV1083    |
| 00 316 <sup>1</sup> i i i 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                    | CR41038      | -      | TD = 4.0 + T - 1 + 0                                                                | CR61084    |
| 1       1       C       1       C       0       1       C       0       1       C       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                    | CRKIADA      | 20     | 82(1) = 3+141592/+(1=0+25+0+050661/10=0+053041/10                                   | CHU1082    |
| μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                    | CRELATO      |        | 1                                                                                   | CKP1080    |
| D0 30 K = 1.1 12.6 (CK1081 10 - 1.4 CK10.2 30 (CK1082 3     |     |                                                                    | CREAD        |        | $ \begin{array}{c} c \circ s \circ 1 = o + t i n s \\ s = (t - s) t o \end{array} $ | CONTROP    |
| PRINT 370, (MONTHIKI) + KI = K, KK), HAT(I+1)       CRK 1043       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | D0 300 K = 1, 12, 6                                                | CRK1nA1      |        | $l = \frac{1}{2} \int dz dz$                                                        | CDELAGO    |
| PRINT 370. (MONTHIKI). KI = K. KK), HAT(1:1)       CRK1043       0       D.1.1.4.21223270/10.4.2151700       CRK1051         200       CONTINUE       GI = 0.8613631       GI = 0.8613637       GI = 0.8613637       GRK1043         300       CONTINUE       GR = 0.8613637       GI = 0.8613637       GRK1043       GI = 0.8613637       GRK1043         310       CONTINUE       CRK1045       GR = 0.8013637       GRK1044       GRK1043         310       CONTINUE       CRK1045       GR = 0.8013637       GRK1044       GRK1045         310       CONTINUE       CRK1045       GR = 0.80118       GR = 0.80118       GR = 0.80118         310       CONTINUE       CRK1045       CRK1045       GR = 0.80118       GR = 0.80111111111       G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                    | CRKIDAD      | - 0    | 10 - 410-14140<br>07/1) - 3 - 410-07010(740 - 64-0 - 6-00-17040,0-6-000/70          | CREIGO     |
| PRINT 380, (XANS(NI; HX], NI = K, KX], MX = J, JP)       CRN104       GI = 0.06113031       CRN1045         300       CONTINUE       GI = 0.06113031       CRN1045       GI = 0.06113031       CRN1045         310       CONTINUE       GRN1045       GI = 0.06113031       CRN1045       GI = 0.06113031       CRN1045         310       CONTINUE       CRN1045       GI = 0.06113031       CRN1045       GI = 0.06113031       CRN1045         310       CONTINUE       CRN1045       GI = 0.06113031       CRN1045       GI = 0.06113031       CRN1045         310       CONTINUE       GRN1046       CrEst = 2       GI = 0.06115021       CRN1045       CRN1045         310       CONTINUE       GRN1046       CrEst = 2       GI = 0.06115021       CRN1045       CRN1045         310       CONTINUE       GRN1045       CRN1045       CRN1045       CRN1045       CRN1045         310       CONTINUE       GRN1045       CRN1045       CRN1045       CRN1045       CRN1045         310       CONTINUE       GRN1052       C0 × 01 = 1, iTx       CRN1045       CRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | PRINT 370. (MONTHIKIS+ KT = K. KK). HATII+13                       | CRK1043      | 30     | 92 (1/ = 3+141992/**/**20+191902/10*04019399/10                                     | CoKingi    |
| 300       CONTINUE       CRR 1045       CRR 1045       CRR 1045       CRR 1045         310       CONTINUE       CRR 1045       CRR 1045       CRR 1045       CRR 1045         310       CONTINUE       CRR 1045       CRR 1045       CRR 1045       CRR 1045         0       J = J+1       CRR 1045       CRR 1045       CRR 1045       CRR 1045         0       J = J+1       CRR 1045       CRR 1045       CRR 1045       CRR 1045         0       J = J+1       CRR 1051       SZ2 = 0.0       CRR 1045       CRR 1045         0       J = J+1       CRR 1051       SZ2 = 0.0       CRR 1045       CRR 1045         0       J = J+1       CRR 1051       SZ2 = 0.0       CRR 1045       CRR 1045         0       J = 0,0       CRR 1053       SZ1 = SZ2       CRR 1053       CRR 1053         220       CONTINUE       CRR 1055       SZ = SZ = SZ1       CRR 1057       CRR 1057         320       CONTINUE       CRR 1055       SG = SZ = SZ1       CRR 1057       CRR 1057 <td></td> <td>PRINT 380. ((XANS(NI + HX) + NI + K+ KK) + HX + J+ JP)</td> <td>CRK1044</td> <td></td> <td><math display="block">\mathbf{G}_{1} = \mathbf{G}_{1} \mathbf{G}_{1} \mathbf{G}_{1} \mathbf{G}_{1}</math></td> <td>CRK1092</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | PRINT 380. ((XANS(NI + HX) + NI + K+ KK) + HX + J+ JP)             | CRK1044      |        | $\mathbf{G}_{1} = \mathbf{G}_{1} \mathbf{G}_{1} \mathbf{G}_{1} \mathbf{G}_{1}$      | CRK1092    |
| 310       CONTINUE       CRR1045       27 = 40       CRR1045       CRR1045         310       CONTINUE       CRR1045       CRR1045       CRR1045       CRR1045         1 = J+1       CRR1045       CRR1050       K = 2.027F       CRR1045       CRR1045         1 = J+1       CRR1050       K = 2.027F       CRR1050       CRR1050       CRR1050       CRR1050         D0 320 K = 1: 12.6       CRR1052       CRR1052       C0.00       CR1052       C0.00       CRR1052       CRR1050         PRINT 350; (CRASINI, MXI, NI = K, KK), MATIIZ-11       CRR1052       C0.00       SI = 322       CRR1052       CRR1053       SI = 322       CRR1053       CRR1054       CRR1055       SI = 322       CRR1055       CRR1055 </td <td>300</td> <td>CONTINUE</td> <td>CRK1045</td> <td></td> <td></td> <td>CREINSI</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300 | CONTINUE                                                           | CRK1045      |        |                                                                                     | CREINSI    |
| 310       CONTINUE       CRK1647       TEST = 2       CRK1647         PRINT SUBGRADE VALUES       CRK1646       CRK1646       CWC0POLTE POINTS FOR LEGENDRE-GAUSS INTEGRATION **       CRK1646         J1 = J+1       CRK1646       CWK1650       Zf = 2.027       CRK1646       CRK1646         D0 320 K = 1x 12+6       CRK1651       SZ = 0.0       CRK1647       CRK1647         pRINT 370, (MONTHKK1), KI = K, KK), HAT(IZ+1)       CRK1653       SZ = 82/11/2/2F       CRK101         pRINT 370, (MONTHKK1), KI = K, KK), HAT(IZ+1)       CRK1655       SF = SZ = 7S21       CRK103         220       CONTINUE       CRK1655       SF = SZ = 7S21       CRK103         320       CONTINUE       CRK1055       SF = SZ = 7S21       CRK103         321       CONTINUE       CRK1055       SF = SZ = 7S21       CRK1056         320       FCRMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1057       SG = SF*G2       CRK1065         330       FCRMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1065       SG = SF*G2       CRK1067         330       FCRMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1065       SG = SF*G2       CRK1067         330       FCRMAT       (10X, *GAN K0510, 5/15X, 6E10, 3 1)       CRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | دول عدل                                                            | CRK1046      |        | 75 * 6R                                                                             | CRK1094    |
| C       PHINT SUBGRADE VALUES       CRK1048       C       ** COUNTE POINTS FOR LEGENDRE-GAUSS INTEGRATION **       CRK1050         J = J+1       CRK1051       CRK1051       CRK1051       CRK1052       CRK1052         D0 320 K = 1+ 12+ 6       CRK1052       CD 401 H = 1, 1Tv       CRK1001       CRK1051       CRK1001         PRINT 390, (CAASS(NI, MX1, NI = K, KK), MAT(IZ+1)       CRK1053       S21 = S22       CRK102       CRK102         PRINT 390, (CAASS(NI, MX1, NI = K, KK), MA = J, J1)       CRK1055       SF = S22-S21       CRK102         PRINT 390, (CAASS(NI, MX1, NI = K, KK), MA = J, J1)       CRK1055       SF = S22-S21       CRK102         PRINT 390, (CAASS(NI, MX1, NI = K, KK), MA = J, J1)       CRK1055       SF = S22-S21       CRK102         RETURN       CRK1054       SG1 = SF*61       CRK105       CRK105         335       FORMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 )       CRK1059       AZIK) = PM-S62       CRK106         335       FORMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 )       CRK1059       AZIK) = PM-S62       CRK107         335       FORMAT       (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 )       CRK1054       AZIK) = PM-S62       CRK106         336       FORMAT       (10X, *MEAN VALUE*, 4X, F6.0, 3X, E10.3 )       CRK1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 310 | CONTINUE                                                           | CRK1047      |        | NTEST = 2                                                                           | CRK1095    |
| PRINT SUBGRADE VALUES       CRK1949       K = 1       CRK1949       CRK1949         J = J+1       CRK1050       27 = 2.0*27       CRK1096         D 320 K = 1: 12*6       CRK1051       S72 = 0.0       CRK100         KK = K+5       CRK1053       S72 = 0.0       CRK1010         PRINT 300, (MONTM(KI)*KI = K*KK), MAT(IZ+1)       CRK1053       S72 = R21(+1)/2F       CRK100         220       CONTINUE       CRK1055       S72 = R21(+1)/2F       CRK103         320       CONTINUE       CRK1055       S72 = S721       CRK103         320       FCRMAT (10%, *HEAN VALUE*, 4%, F6.2; 8%, E10-3)       CRK1057       S61 = S*61       CRK105         330       FCRMAT (10%, *HEAN VALUE*, 4%, F6.2; 8%, E10-3)       CRK1059       A2(K) = PM-SG2       CRK106         345       FORMAT (10%, *HEAN VALUE*, 4%, F6.2; 8%, E10-3)       CRK1060       A2(K) = PM-SG2       CRK106         350       FCRMAT (10%, *HEAN VALUE*, 4%, F6.2; 8%, E10-3)       CRK1060       A2(K) = PM-SG2       CRK106         350       FCRMAT (10%, *HEAN VALUE*, 4%, F6.2; 8%, E10-3)       CRK1060       A2(K) = PM-SG2       CRK107         350       FCRMAT (14%, F4.0, 4%, A10, 5%, E10, 2)       CRK1060       CRK1101       CRK1102       CRK1103         350       FCRMAT (14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ē   |                                                                    | CRK1048      | c      | ** COMPLTE POINTS FOR LEGENDRE-GAUSS INTEGRATION **                                 | CRK1096    |
| J = Jol       CRK1050       ZF = 2,02F       CRK1090         D0 320 K = 1,012,0       CRK1051       SZ2 0.0       CRK1090         D0 320 K = 1,012,0       CRK1052       C0 *01 = 1, iT.,       CRK1001         PRINT 370, (MONTH(KI), KI = K, KK), HAT(IZ-11       CRK1053       SZ1 = SZ2       CRK1102         PRINT 390, (CAASS(NI, NX), NI = K, KK), MX = J, J1       CRK1055       SF = SZ2*S21       CRK1102         220       CONTINUE       CRK1055       SF = SZ2*S21       CRK1104         CONTINUE       CRK1057       SG1 = SF6G1       CRK1106         AETURN       CRK1059       AZIK) = PM-SG1       CRK1106         335< FORMAT ( 10%, = CONF VALUE*, 4%, F6.2, 8%, E10-3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | č   | PRINT SUBGRADE VALUES                                              | CRK1849      |        | K = 3                                                                               | CRK1097    |
| J1 = J-1       CRK1051       SZ2 = 0.0       CRK1099         CD 320 K = 1, 12, 6       CRK1052       C0 40 1 = 1, 174       CRK101         PRINT 370, (MONTH(KI); KI = K, KK), MAT(IZ+1)       CRK1053       SZ2 = RZ(1+1)/ZF       CRK102         PRINT 390, (XAASS(NI, MX), NI = K, KK), MAT(Z+1)       CRK1055       SF = SZ2*SZ1       CRK103         320       CONTINUE       CRK1055       SF = SZ2*SZ1       CRK1064         RETURN       CRK1056       PH = SZ2*SZ1       CRK1065         330       FCRMAT ( 10X, *MEAN VALUE** 4X; F6.2*, BX, E10.3 )       CRK1059       SG2 = SF*G2       CRK106         335       FCRMAT ( 10X, *MEAN VALUE** 4X; F6.2*, BX, E10.3 )       CRK1059       AZ(K) = PM*SG2       CRK107         335       FCRMAT ( 10X, *MEAN VALUE** 4X; F6.2*, BX, E10.3 )       CRK1060       AZ(K) = PM*SG2       CRK107         335       FCRMAT ( 10X, *MEAN VALUE** 4X; F6.2*, BX, E10.3 )       CRK1061       AZ(K*2) = PM*SG2       CRK107         345       FCRMAT ( 10X, *MEAN VALUE** 4X; F6.2*, BX, E10.3 )       CRK1064       AZ(K*2) = PM*SG2       CRK107         350       FCRMAT ( 15X**EEAN VALUE** 10X; E10.3/15X; 6E10.3/1       CRK1064       AZ(K*2) = PM*SG1       CRK1107         350       FCRMAT ( 14X* F4.0*, AX, A10* 6X*, E10.2* 13X, E10.2*)       CRK1064       AN CONTINUE <td></td> <td>[+ل ⇒ ل</td> <td>CRK1050</td> <td></td> <td>ZF = 2+0*ZF</td> <td>CRK1098</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | [+ل ⇒ ل                                                            | CRK1050      |        | ZF = 2+0*ZF                                                                         | CRK1098    |
| C0       320       K = K+5       CR K1052       C0 +0 1 = 1, 1TN       CR K100         PRINT       370, (MONTH(KI)+ KI = K, KK), MAT(IZ+1)       CR K1054       S21 = S22       CR K102         PRINT       390, (XAN51NI, NX), NI = K, KK), MAT J, J1       CR K1055       S22 = R2(1+1)/2F       CR K102         PRINT       390, (XAN51NI, NX), NI = K, KK), MAT J, J1       CR K1055       S52 = S22*S21       CR K102         220       CONTINUE       CR K1055       S51 = S72*S21       CR K105         RETURN       CONTINUE       CR K1055       S61 = SF*G1       CR K105         330       FCRMAT (10X* **EAN VALUE** 4X* F6.2* 8X* E10*3 1)       CR K1059       A2(K*1) = PM+S62       CR K106         330       FCRMAT (10X* **CONF VALUE** 4X* F6.2* 8X* E10*3 1)       CR K1060       A2(K*1) = PM+S62       CR K107         340       FORMAT (10X* **CONF VALUE** 4X* F6.2* 8X* E10*3 1)       CR K1065       A2(K*1) = PM+S62       CR K1107         341       FORMAT (10X* **CONF VALUE** 4X* F6.2* 8X* E10*3 1)       CR K1061       A2(K*1) = PM+S62       CR K1108         345       FORMAT (10X* **A* 6410* 3/15X* 6610*3 1)       CR K1061       A2(K*1) = PM+S62       CR K1108         350       FORMAT (14X* F4*0* AX* A0* 6X* 2E10*2* 13X* E10*2)       CR K1063       K * X**       CR K1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 1+L + 1                                                            | CRK1051      |        | 572 <b>=</b> 0,0                                                                    | CRK1099    |
| KK = K+5       CRK1053       \$21 = 522       CRK101         PRINT 390, ((XANS(NI, HX), NI = K, KK), MX = J, J1)       CRK1055       SZ2 = RZ(1+)/ZF       CRK103         320       CONTINUE       CRK1055       SF = SZ2=SZ1       CRK105         320       CONTINUE       CRK1055       SF = SZ2=SZ1       CRK105         320       CONTINUE       CRK1055       SG1 = SF*G1       CRK105         330       FCRMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1057       SG1 = SF*G2       CRK106         331       FCRMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1059       AZ(K1) = PM=SG1       CRK106         335       FORMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K1) = PM=SG1       CRK106         340       FCRMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K1) = PM=SG1       CRK106         335       FORMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K1) = PM=SG1       CRK106         340       FORMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K1) = PM=SG1       CRK106         345       FORMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K*1) = PM=SG2       CRK1061         350       FORMAT (14X, F4.0, 4X, A10, 6X, 2E10.2/ 13X, 6E10.3/15X, 6E10.3/15X, 6E10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | DD 320 K = 1+ 12+ 6                                                | CRK1052      |        | Co +0 I = 1, ITW                                                                    | CRK1100    |
| pRint 370, (Month(Ki), Ki = K, KK), MAT(12,1)       CRK1054       \$22 = B2(1+1)/2F       CRK103         pRint 300, (XAAS(NI, MX), NI = K, KK), MX = J, J1)       CRK1055       \$\$f = \$22,51       CRK103         320       CONTINUE       CRK1056       pH = \$22 + 82(1)       CRK103         RETURN       CRK1056       pH = \$22 + 82(1)       CRK105         330       FCRMAT       (10X, *HEAN VALUE*, 4X, F6.2, BX, E10-3 1       CRK1059       A2(K) = PM=\$61       CRK105         330       FCRMAT       (10X, *CGNF VALUE*, 4X, F6.2, BX, E10-3 1       CRK1059       A2(K) = PM=\$62       CRK1061         335       FORMAT       (15X**CAN VALUE*, 4X, F6.2, BX, E10-3 1       CRK1064       A2(K) = PM=\$62       CRK107         340       FORMAT       (15X**CAN VALUE*, 4X, F6.2, BX, E10-3 1       CRK1060       A2(K) = PM=\$62       CRK107         345       FCRMAT       (15X**CAN VALUE*, 4X, F6.2, BX, E10.3 1       CRK1061       A2(K+3) = PM=\$62       CRK1107         350       FORMAT       (15X**CAN VALUE*, 4X, A10, 5X, 6E10.3 1)       CRK1061       A2(K+3) = PM=\$62       CRK1103         350       FORMAT       (15X**CAN VALUE*, 4X, A10, 5X, 6E10.3 1)       CRK1063       A2(K+3) = PM=\$62       CRK1106         350       FORMAT       (15X**CAN VALUE*, 4X, A10, 5X, 6E10.3 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | KK # K+5                                                           | CRK1053      |        | 521 # SZZ                                                                           | CRK1101    |
| PRIMI 330, ((AASSINI, MX), NI = K, KK), MX = J, JI       CRK1055       SF = S22-S21       CRK105         CONTINUE       CRK1056       PH = S22*S21       CRK105         RETURN       CRK1057       SG1 = SF*G1       CRK105         330       FCRMAT (10X, *MEAN VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1057       SG2 = SF*G2       CRK1057         330       FCRMAT (10X, *CONF VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1057       SG2 = SF*G2       CRK107         335       FORMAT (10X, *CONF VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1059       AZ(K*1) = PM+SG1       CRK107         340       FORMAT (15X**CONF IDENCC VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1060       AZ(K*1) = PM+SG2       CRK108         340       FORMAT (15X**CONF IDENCC VALUE*, 4X, F6.2, 8X, E10.3 1       CRK1060       AZ(K*2) = PM*SG2       CRK108         340       FORMAT (15X**CONF IDENCC VALUE*, 4X, F6.2, 8X, 2E10.2)       CRK1061       AZ(K*2) = PM*SG2       CRK1108         350       FORMAT (14X* F4.0, 4X, A10.6 SX 2E10.2)       CRK1063       K = N*A       CRK1118         350       FORMAT (14X* F4.0, 4X, A10.6 SX 2E10.2)       CRK1063       K = N*A       CRK1112         350       FORMAT (14X* F4.0, 4X, 610.3 / 13X, 6E10.3 / 13X       CRK1065       RETURN       CRK1112         350       FORMAT (19X *VERT* / 18X*F0F0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | PRINT 370, (MONTH(KI), KI W K, KR), HAT(12+1)                      | CRK1054      |        | SZ2 # BZ(1+1)/2#                                                                    | CRK1102    |
| 322       CONTINUE       CRK105       PM = 522521       CRK105         RETURN       CRK1057       SG1 = 5F6G1       CRK105         330       FCRMAT ( 10X, *HEAN VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1059       SG2 = 5F6G1       CRK105         335       FORMAT ( 10X, *COMF VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1059       AZ(K) = PM=SG1       CRK105         340       FORMAT ( 10X, *COMF VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1059       AZ(K) = PM=SG2       CRK1061         340       FORMAT ( 15X*COMF VALUE*, 4X, F6.2, 8X, E10-3 1       CRK1060       AZ(K*2) = PM=SG2       CRK1061         340       FORMAT ( 15X*COMF VALUE*, 4X, F6.2, 8X, E10.3/15X, 6E10.3/15X, 6E10.3)       CRK1062       AZ(K*2) = PM=SG2       CRK1010         355       FORMAT ( 15X*COMF VALUE*, 4X, F10.3/15X, 6E10.3/15X, 6E10.3)       CRK1063       K = A*4       CRK111         360       FORMAT ( 14X, F4.0, 4X, A10, 6X, E10.2/15X, 6E10.3/15X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | PRINI 390, ((AANSINI, MX), NI = K, KK), MX = J, J1)                | CRK1055      |        | $SF = SZ_2 = SZ_1$                                                                  | CRK1103    |
| CK       CKK1037       SG1 = SFG1       CKK1037         330       FCRMAT       (10X+ *HEAN VALUE*+ 4X+ F6.2+ 8X+ E10-3 1       CRK1058       SG2 = SFG2       CRK107         335       FCRMAT       (10X+ *EGNF VALUE*+ 4X+ F6.2+ 8X+ E10-3 1       CRK1059       AZ(K) = PM=SG1       CRK107         335       FCRMAT       (15X**EGNF VALUE*+ 4X+ F6.2+ 8X+ E10-3 1       CRK1060       AZ(K+1) = PM=SG2       CRK1107         340       FCRMAT       (15X**EGN* VALUE*+(10.3/15X*6E10-3)       CRK1061       AZ(K+3) = PM+SG2       CRK1103         340       FCRMAT       (15X**EGN* VALUE*+(10.3/15X*6E10-3)       CRK1061       AZ(K+3) = PM+SG2       CRK1103         350       FCRMAT       (14X**F4.0* 4X**A10**K*E10.3/15X*6E10-3)       CRK1063       K = N+A       CRK1103         350       FCRMAT       (14X**F4.0* 4X**A10**K*E10.2)       CRK1064       40       CONTINUE         360       FCRMAT       (14X**F4.0* 4X**A10**K*E10.2)       CRK1064       40       CONTINUE         370       FCRMAT       (14X**F4.0**4X**A10**K*E10.2)       CRK1065       RETUR*       CRK1112         370       FCRMAT       (14X**F4.0**4X**A10**       CRK1065       RETUR*       CRK1112         370       FCRMAT       (14X**F4.0**4X**A10*******************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 324 |                                                                    | CHRIDSO      |        | PM # \$Z2+\$Z1                                                                      | CRK1104    |
| CRIDE       CRN106       SG2 # SF G2       CRN106         330 FCRMAT (10% *MEAN VALUE** 4%, F6.2* 8%, E10*3 1)       CRK1059       AZ(K1) # PM*SG1       CRN107         340 FORMAT (15% *CONF VALUE** 4%, F6.2* 8%, E10*3 1)       CRK1059       AZ(K1) # PM*SG2       CRN108         340 FORMAT (15% *CONFIDENCE VALUE** 10%, 6E10*3 1)       CRK1061       AZ(K*2) # PM*SG2       CRN108         345 FORMAT (15% *CONFIDENCE VALUE*** 10%, 6E10*3 1)       CRK1061       AZ(K*2) # PM*SG2       CRN108         350 FORMAT (14**** F4*******************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷ . | REJURG                                                             | CRAIDS       |        | SGI = SF = GI                                                                       | CRVIIOS    |
| 335       FORMAT       10xx + CONF VALUE* 4 xx + F6.2* 00x E10*3 1       CRK1057       AZ(K*1) = PM=SG2       CRK1061         346       FORMAT       15x************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C   | FORMAT ( 16%, BREAN NATION, AV PL & BY, FIA & 1                    | CRK1050      |        | SGZ = SFTG2                                                                         | CHUILDO    |
| 335       FORMAT       10x+ CLM+ VALUE* 4x+ 6x, 2x+ 6x+ 6x+ 6x+ 6x+ 6x+ 6x+ 6x+ 6x+ 6x+ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 330 | FORMAT ( 1000 -FORM FALLER AN FB.20 DAG CIV-3 )                    | CHALUST CARL |        |                                                                                     | CREATON    |
| 345       FGRMAT       15x=CONFIDENCE VALUES-/10x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,6E10.3/15x,                                                      | 332 | FURNAT ( 1947 FALMER TALUETA 449 F6.95 BAS 21033 )                 | Cotlati      |        | a2(K+1) = PM=5G2                                                                    | CHAILOD    |
| 350       FCRMAT       1 34% F4.00 AX + A10 + 5X + 2E10.2 3X + 2E10.2 1       CRK1062       A1(NS)       CRK111         350       FCRMAT       1 4X + F4.00 + AX + A10 + 5X + 2E10.2 1       CRK1063       K = N + A       CRK111         360       FORMAT       1 4X + F4.00 + AX + A10 + 5X + 2E10.2 1       CRK1063       K = N + A       CRK111         360       FORMAT       1 4X + F4.00 + AX + A10 + 5X + E10.2 1       CRK1064       40       CONTINUE       CRK111         370       FCRMAT       1 24X + 6A10 + / 13X + A10 + 3X + E10.2 1       CRK1065       RETURN       CRK1113         380       FORMAT       (19X + VERT+ / 18X * TOP* 4X + 6E10 + 3 / 18X * B0TTOM *       CRK1066       END       CRK1114         1       6E10 + 3 / 19X * AAD       * A10 + 4E10 + 3 / 18X * CRK1067       CRK1066       END       CRK1114         2       *COTTOM* & E10.3 / 1       CRK1069       CRK1069       CRK1069       CRK1069       CRK1070         500       FORMAT       1 9X * VERT* 2X + 6E10 + 3 / 19X * RAD * 6E10 + 3 / 19X       CRK1069       CRK1070       CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 345 | FURNET I IVE WERE TO DECTIONAL ARA STRATES.                        | CORIAND      |        |                                                                                     | CONTINUE   |
| 336       FORMAT       14x, F4.0, 4x, Al0, 5x, E10.2, JX, E10.2, CRK1063       CRK1053       CRK1053         370       FCRMAT       124x, 6A10, JX, E10.2, IX, E10.2, I       CRK1065       RETURN         370       FCRMAT       19x *VERT*/18x*TOP* 4x, 6E10.3 / 18x, E10.3, IRx       CRK1065       RETURN         380       FORMAT       (19x *VERT*/18x*TOP* 4x, 6E10.3 / 18x, E10.3, IRX       CRK1065       RETURN         390       FORMAT       (19x *VERT*/18x*TOP* 4x, 6E10.3 / 18x       CRK1067       CRK1068         390       FORMAT       (19x *VERT* 2x, 6E10.3 /)       CRK1069       CRK1069         END       CRK1070       CRK1070       CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340 |                                                                    | CREATER      |        |                                                                                     | CRAILIU    |
| 370       FCRMAT       i       24%, 6A10       / 13%, A10       CRK1055       RETURN         380       FORMAT       (19% +VERT+ / 18%*TOP+ 4%, 6E10.3 / 18% +BOTTON + CRK1065       CRK1045       CRK111         1       6610-3 / 19% +RDIAL+/ 19% +TOP+ 4%+6E10.3 / 18%       CRK1065       END       CRK114         2       +EOTTON+ 6E10.3 / 18%       CRK1068       CRK1068       CRK1068         390       FORMAT       (19% +VERT+ 2%, 6E10.3 / 19% +RAD + 6E10.3//)       CRK1069       CRK1070         END       CRK1070       CRK1070       CRK1070       CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 360 | FORMAT ( 14X4 F4.0. 4Y. 410. 4Y. F10.2. 13Y. F10 2.1               | CPKIn64      | 6.0    | CONTINUE                                                                            | CRK1112    |
| 380       FORMAT       (19X *VERT* / 18X*TOP* 4X, 6E10.3 / 18X *BOTTOM *       CRK1066       END       CRK114         1       6E10.3 / 19X*RADIAL*/ 18X *TOP* 4X*6E10.3 / 18X       CRK1067       CRK1067       CRK1068         2       *EOTTOM* 6E10.3 / 1       CRK1066       END       CRK1068         390       FORMAT       (19X *VERT* 2X* 6E10.3 / 19X *RAD * 6E10.3/)       CRK1069         END       CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 370 | FCRNAT 1 24X, 6A10 / 13X, A10 3                                    | CRK1065      | ,      | RE TIRM                                                                             | CRELIIJ    |
| 1 6E10-3 / 19X+RADIAL=/ 18X +TOP+ 4X+6E10+3/ 18X CRK1067<br>2 =EOTTOH+ BE10-3 /) CRK1068<br>390 FORHAT (19X +VERT+ 2X+6E10+3 / 19X +RAD + 6E10+3//) CRK1069<br>END CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380 | FORMAT ( 19X +VERT+ / 18X+TOP+ AX, 6F10.3 / 1AX +BOTTOM +          | CRK1n66      |        | FND                                                                                 | CRELIIA    |
| 2 #ÊÔTTÔH \$ÊL0.3 /)<br>390 FORMAT ( 19X +VERT+ 2X, 6E10.3 / 19X +RAD + 6E10.3//) CRK1069<br>END CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 4610-3 / 19X+RADIAL=/ 18X +TOP+ 4X+4E10+3/ 18X                     | CRKIDAT      |        | 5-V                                                                                 |            |
| 390 FORMAT ( 19X #VERT# 2X, 6E10,3 / 19X *RAD * 6E10,3//) CRK1069<br>END CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 2 +ROTTON* 6E10.3 /)                                               | CRKID68      |        |                                                                                     |            |
| END CRK1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390 | FORMAT ( 19X #VERT# 2X, 6E10.3 / 19X #RAD # 6E10.3//)              | CRK1069      |        |                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | END                                                                | CRK1070      |        |                                                                                     |            |

264

.

|     |        | FUNCTION POLY (CH+ A+ K+ DVS)                         | CRK1115 |
|-----|--------|-------------------------------------------------------|---------|
| È.  |        |                                                       | CRK1116 |
| Ċ.  | NS     | NUMBER OF MATERIALS                                   | CRX1117 |
| с   | ĸ      | MATERIAL NUMBER UNDER CONSIDERATION                   | CRK1118 |
| с   | A      | DESIGN VERTICAL STRESS                                | CRK1119 |
| Ĉ   | CH     | CUMULATIVE EQUIVALENT TB-KIP AXLE APPLICATIONS        | CRK1120 |
| č   | DVS    | DESIGN RADIAL STRESS                                  | CRK1121 |
| ĉ   |        |                                                       | CRK1122 |
|     | GO TO  | ) (423,413,403), K                                    | CRK1123 |
| È.  | SUBGI  | RADE                                                  | CRK1124 |
| 403 |        | S] = -ASALN = ALOGIO(CM)                              | CRK1125 |
|     |        | E = 0.34561+51-0.04064+51+Ai N-0.06511+51+51+0.00283  | CRK1126 |
|     | 1      | *51**3.0+0.00744*c1*51*ALN                            | CRK1127 |
|     | •      | POLY # AWAX1 (E. 0.0)                                 | CRK1128 |
|     | RETURN |                                                       | CRK1129 |
| ñ   |        |                                                       | CRK1130 |
| č   | BASE   |                                                       | CRK1131 |
| 413 | CONT   | INUE                                                  | CRK1132 |
|     |        | S1 = -ASS3 = -DVS                                     | CRK1133 |
|     |        | ALN = ALOGIO (CH) SALN2 H ALNON2                      | CRK1134 |
|     |        | E = 0.57852-0.20640+c3.0.07854+c1-0.01464+c3+ALN      | CpK1135 |
|     | 1      | -0.00121*51*ALN-0.00+08*51*53+0.03846*ALN2-0.00093    | CRK1136 |
|     | ż      | *\$1*\$1-0.00062*ALN*\$3*\$3+0.00292*ALN*ALN2*0.00204 | CRK1137 |
|     | 3      | +53**3+0,0001*51*+3-0,000+*53*53*51+0,00006           | CRK1138 |
|     | Ă.     | *\$1*\$1*\$3+0,00046+\$1+\$3+ALN                      | CRK1139 |
|     |        | POLY = AMAXI (F. 0.0)                                 | CRK1140 |
|     | RETURN | tur nontret and                                       | CRK11A1 |
| 423 |        | s1 = -A\$\$3 = -DV5                                   | CRX1142 |
|     |        | ALS & ALOGIA (CH) SALNO & ALN_ALN                     | CRK1143 |
|     |        | E = -0.75465+0.25605*Ai N+0.17009*51-0.14433*ALN*53   | CRK1144 |
|     | 1 I    | +0.01187*ALN*S1+0.01139*S1*S3+0.049*7*S3*S3           | CRKII45 |
|     | ż      | -0.01132+51+51+0.03340+ALN+53+53+0.00115+ALN          | CRK1146 |
|     | 3      | *\$1*\$1+0,01885*\$3**3.0,00025*\$1**3.0,00367*\$3    | CRK1147 |
|     | 4      | *53*51-0.00072*51*51*53-0.01018*51*53+ALN             | CRKI148 |
|     |        | POLY = AMAX1 (E. 0.0)                                 | CRK1149 |
|     | RETURN |                                                       | CRK1150 |
|     | END    |                                                       | CR#1151 |
|     |        |                                                       |         |

|    | FUNCTION XNORM (X) MUS SIGNA)<br>Real Mu    | CRK1152<br>CRK1153            |
|----|---------------------------------------------|-------------------------------|
|    | Z = X+0.005<br>Δ = 0.0                      | CRK1154<br>CRK1155            |
| 10 | A = A+0.01*EXP(-Z+2/2.)/(2.+3.1415926)++0.5 | CRK1156                       |
|    | IF (Z-5.0) 10.10,20                         | CRK1158                       |
| 20 | X <sup>NCRM</sup> = A<br>Retuhn<br>End      | CRK1159<br>CRK1160<br>CRK1161 |

· · · · ·

|    | FUNCTION ALPHA (CONF)                        | CRK1162  |
|----|----------------------------------------------|----------|
|    | A = 0.S~CONF                                 | ČRK1163  |
|    | c = 0.0                                      | CRK1164  |
|    | DEL 1 = 0-0001                               | Co 81165 |
|    | 7 = 0.0005                                   | CRK1166  |
| 10 | C = C+DFLT#FXP(-7#2/2,)/(SOPT(2,#3,14)5926)) | CRK1167  |
| 10 | IF (C-ABS(A)) 20,30,30                       | CRK1168  |
| 20 | T = Z+DELT                                   | CRK1169  |
| •  | 60 re 10                                     | CRK1170  |
| 30 | AA # DELT/2.0+7                              | CRK1171  |
|    | IF (A) 50.40.40                              | CRK1172  |
| 40 | A1 EHA = AA                                  | CRK1173  |
|    | RETURN                                       | CRK1174  |
| 50 | ALPHA = -AA                                  | CRK1175  |
| 24 | RETURN                                       | CRK1176  |
|    | END                                          | CRKLITT  |
|    |                                              |          |

.

•

-

|            | SURPLUTINE COLE (MIN, N. E. V. H. NS, P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHR1178  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CCOFF      | ATTENTSURFOUTINE COLE - 5-LAYER ELASTIC SYSTEM ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBV1114  |
|            | CCMMCN /CDECAL/ A(400+ 5)+ B(400+ 5)+ C(400+ 5)+ D(400+ 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1180  |
|            | ETMENSTON E (5) . V (5) . H(4) . X(5'5.4) . SC(4) . PH(4.4.4) . FH(2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1181  |
|            | STMENSTON SUI(4.2), (VI(2.1), SU2(4.4), (V2(2.2), SU3(4.8), (V3(2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK1182  |
|            | The second | CONTINN  |
|            | 1419 374(491C/+ C4+C2+3) 1(0)4 N(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | continat |
|            | LC = KIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHRIIN   |
| CS-MA      | SET UP PAIRIX X #DI#MI*KI*K*M*D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHU1192  |
| с          | COMPLTE THE MATRICES X(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1186  |
|            | DO 10 K = 1+ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK1187  |
|            | $T_1 = E(K) = \{1 + 0 + V(K + 1)\} / (E(K + 1) + (1, 0 + V(K))\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRKI188  |
|            | $\tau i \mu = \tau 1 - 1 \cdot 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK1189  |
|            | OW = Peutki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRKIIGO  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COKLON   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OPKING   |
|            | VK2 = 2*0 - 4 (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHUIJAS  |
|            | VR+2 = 2:0=V(R+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHUT1A2  |
|            | AK4 = 5°04AK5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR41194  |
|            | VKF4 = 2+0+VKPZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CKK1192  |
|            | VKK8 = 8+0+V(K)+V(K+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1196  |
| ÷          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1197  |
| <b>4</b> . | I(K = 1, 1) = VKA-3.0+T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRKII98  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CORLING  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cox 1300 |
|            | $X(r_3 \rightarrow 1) = T[M_{n}(h) r_{n+1} \rightarrow 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRAZUV   |
|            | X(K, 4, 1) = -2.0011PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHRISOI  |
| с          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHRISOS  |
|            | T3 = P + 2 + (V + 2 - 1 - 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CBK1503  |
|            | T4 = VKK8+1.0-3.0+VKP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1204  |
|            | T5 # PH2*(VKP2+1+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1205  |
|            | T6 = VKK8+1.0-3.0+VK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1206  |
| ÷.         | to the locate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CPK1207  |
| C          | 1/2 1. 2) - /TTATATIA/TRATALIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CREIZOR  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00410-0  |
|            | x(n+ 2+ 2) = 11=1404=3+01=1+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CUDIZOZ  |
|            | X(K+ 4+ 2) = TIM=(1+0-PM2-VKP4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CKKTSIO  |
| с          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1211  |
|            | x(K, 3, 4) # (T3-T4+T3+(T5+T6)}/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8K1215  |
| ć          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1213  |
| -          | T3 # PH2*PH-VKK8+1+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1214  |
|            | TA = P+2* (Vx2-VxP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1215  |
| ~          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CREIZIG  |
| L          | V(K, 1, 4) = (+3+T4+VKD3=T1++T3+T4+VK2))/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CP81217  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONTAIN  |
|            | A/1/2 4 6/ 4 (4/34/774776/1]#(12/144/2/1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CON1210  |
| ſ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | URDACIT. |
|            | x(K+ 1+ J) = T1M=(1+U+PH2=VK4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CR41220  |
|            | X(K+ Z+ 3) = 2.041144P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHK1551  |
|            | x(K+ 3+ 3) # AK+-3+0-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8K1555  |
|            | $x(\mu, A_{\mu}, 3) = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1223  |
| r          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1224  |
|            | Y (K. 2. 4) = TIMP (PH2-VKP4+) - A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1225  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1226  |
|            | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COK1227  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONTROPT |
| 10         | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHR4228  |
| C          | CCMPUIE THE PRODUCT MATRICES PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHW1558  |
|            | SC(N) = 4+0=(V(N)-1+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1230  |
|            | 1F (N-2) +0+20+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK1231  |
| >0         | LC 30 K1 * 2+ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1212  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cox1233  |
|            | SC(M) = SC(M+1)+4-0*(V(M)-1.A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CREIZIA  |
| 1.         | CONTINUE CONTRACTOR AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTRACT |
| 50         | C ANT 2 TANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cuu1535  |

· · · ·

| . 40 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1236   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Ċ.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COK1337   |
|      | ¥ = N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONTAR    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CK41230   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK1239   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRELATO   |
| 60   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 30   | STATE OF # A(K) 14 U+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRVISAT   |
| 90   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1242   |
|      | CV1(1, 1) = =2.0#P#H(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CORÍDAR   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6001649   |
|      | $c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A1}c_{A$ | CHW1544   |
|      | K = K-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1245   |
|      | IF (K) 200.200.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTRAC   |
| Ξ    | r. (c) rootrootio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHUISAA   |
| C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK1247   |
| 70   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1248   |
|      | DO 90 + 1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CORIAND   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHREEN    |
|      | ل+ل = إل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1250   |
|      | 7(1) = SV1(1+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK1251   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0061063   |
|      | 1151 - 241156 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHUISSE   |
|      | T(3) = SV1(3+ j)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1253   |
| <    | 7743 # SV3744 .13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roxiosa   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coriers   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHU1523   |
|      | \$V2(I+ J1-1) = X(K+ I+ 1)+X(K+ I+ 2)+T(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1256   |
| 80   | SV2(In J1) - Xeka In 3) Traver/Ka In A) Trav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1357   |
| 0.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 70   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHRISSO   |
|      | f(1) = Cvl(1 + F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1259   |
|      | T(2) = -2.0 + P + (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK1260   |
|      | CV3.1. 1. T.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CD81341   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      | CAS(T) SI + 1(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHUISOK   |
|      | CV2(2+1) = T(1)+T(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1263   |
|      | CV2(2.2) = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C061264   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | off ind F |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHR 1200  |
| _    | 1F (K) 200,200,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRN1200   |
| Ċ.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CpK1267   |
| 100  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTAGE   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARLEDO  |
|      | no 140 0 = 14 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHUTSOA   |
|      | ل = بن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1270   |
|      | IF (41-2) 120-120-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COK1271   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 110  | JI = 01+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHREETE   |
| 120  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1273   |
|      | T(1) # 5V2(1+ i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1274   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      | T(2) # 5*2(2* J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHK1275   |
|      | (L +E)SV2 = (E)T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1276   |
|      | T (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CBK1977   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      | UU 130 I - I + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CKKTS18   |
|      | 5V3(I+ JI) = X(K+ I+ 1)+X(K+ I+ 2)+X(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1279   |
| 130  | 58371. J1423 m w/Ka I. 3307733.w/K. I. 6307743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK1280   |
|      | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTRACT  |
| 140  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHNAZOI   |
|      | [(1) = -2.0#F•4(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRAIZEZ   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK1283   |
|      | $C_{Y} = \{1, \dots, 1\}$ = $C_{Y} = \{1, \dots, N\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONLARA   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      | CA3(5) 2) = $CA5(1)$ 2)-4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CKVISNO   |
|      | CV3(1+ J+2) = CV2(2+ J)+T(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1286   |
|      | CV3 (2+ J+2) = CV2 (2+ J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1287   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0011008   |
| 120  | SUNT SNDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHUISSO   |
|      | K = 5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1289   |
|      | IF (K) 200+200+160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1290   |
| r    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CREIDRI   |
| ~    | C () 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0001271   |
| 100  | CAULTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHV1545   |
|      | PO 180 J # 1+ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CKK1583   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |

| TIL S SYRIA IN                                      | CRK1294   |
|-----------------------------------------------------|-----------|
|                                                     | CONTROS   |
| 1151 = 243151 01                                    | C-01273   |
| T(3) = S¥3(3+ J)                                    | CBV15A0   |
| T(4) = SV3(4+1)                                     | CRK1297   |
| 715) = 57311+ 1+41                                  | CRK1298   |
|                                                     | 0011000   |
| 1(6) = 2/3(5+ 3++)                                  | CRITERA   |
| T(7) = SV3(3) j+4)                                  | CRK1300   |
| TIRS I SVIII LAAD                                   | CPK1-01   |
|                                                     | Cot 1302  |
| DC 110 1 - 10 -                                     | C         |
| 5V4(1, J) = A(K, I, 1)=T(1)+X(K, I, 2)=T(2)         | CKK1303   |
| SVA(Is 1+4) # X(Ko Is 3) #7(3) +X(Ko Is 4) #T(4)    | CRK1304   |
| CULT, HAN A VIE. T. HAT/MANYE. T. MET/61            | CRKisns   |
|                                                     | CONTRACT  |
| 5V4(1+ J+12) # X(K+ 1+ 3)+(7)+X(K+ 1+ 4/+(0)        | CHAISOD   |
| CONTINUE                                            | CAK1307   |
| T(1) = -2.0+Peu(K)                                  | CRK1308   |
|                                                     | COK 1 209 |
|                                                     | C         |
| CA4(1) # CA3(1) 1)                                  | CBH#310   |
| CV4(2; J) = CV3(1, J)-7(1)                          | C8K1311   |
| FUALLA JAAL & FURLA JIATEL                          | CRKialz   |
|                                                     | C-81313   |
| $(\sqrt{4}(2), \sqrt{4}) = (\sqrt{2}(2), \sqrt{4})$ | 0000000   |
| CONTINUE                                            | CKK1314   |
|                                                     | CRK1315   |
| CONTINUE                                            | CRK1316   |
|                                                     | CORINIZ   |
|                                                     | CONICO    |
| $L_0 \ge 10 \text{ K} = 2 \text{ N}$                | CKV1310   |
| NT(K) = NT(K-1;+NT(K-1)                             | CRK1319   |
| Go 376 K # 1. N                                     | CaK1320   |
|                                                     | CRK1121   |
|                                                     | COKIANA   |
|                                                     | Universe  |
| PM(K1+ I+ 1) = 0.0                                  | CHV1353   |
| PM(K1 + 1 + 2) = 0 + 0                              | CRK1324   |
| CONTINUE                                            | CRK1325   |
|                                                     | Cotlize   |
|                                                     | 0011-03   |
| 203701 = 1, 11                                      | CR01321   |
| 12 = I+I1                                           | CRK1328   |
| GO TO (230-240-250-2601+ K                          | CRK1129   |
|                                                     | COKINIO   |
|                                                     | CON 1 221 |
| 1(3) # CAT(1+ I)                                    | CK01331   |
| T(4) = CV1(2+ I)                                    | CRK1332   |
| 60 TG 270                                           | CRK1113   |
| CONTINUE                                            | CRKIII    |
|                                                     | coxiast   |
| (12) = (221), (1)                                   | UKD 4330  |
| T(4) = CV2(2+ 1)                                    | CRK1336   |
| 60 TO 270 -                                         | CRK1-27   |
| CO. 71.06                                           | CONISSA   |
|                                                     | 0011-00   |
| T(2) # CV3(1) []                                    | CHK1334   |
| T(4) # CV3(2+ E)                                    | CRK1349   |
| GO TO >70                                           | CRK1341   |
| CONTINUE                                            | CRK1142   |
|                                                     | COX1      |
| 1131 - 64411 31                                     | URN1343   |
| T[4] # CV4(2+ T]                                    | CRK - 344 |
| CONTINUE                                            | Ca×1345   |
|                                                     | CRKIZA    |
| 1767 - UTV<br>Tana - Ala                            | COK1-47   |
| (12) = 0 + 0                                        | CHN134/   |
| 12 (1(3)+08+01 290+280+280                          | CRK1348   |
| $\tau(1) = EXP(\tau(3))$                            | CRK1349   |
| 16 (************************************            | CRK1150   |
| - ()(-,,,,                                          | C2K1-#1   |
| 1367 - 67513332                                     | Curry 231 |

C<sub>200</sub>

 · · · · ·

| 33.6 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CPK11-2  |            | n san ûliyê xwe in≊û¢el zave we W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69K1 - 68 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 514  | $P_0 370 J = 1, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1353  | CHESSEL    | ACREADING HEADEL (NI: XI: T)<br>ACCREACESUREOUTINE RESSEL - S-LAYER FLASTIC SYSTEM ACCREACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1409   |
|      | GO TO (320,330,340,350), K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1354  | 0          | IMENSION PZ(0) . 62(6) . P1(6) . 01(6) . 0(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1410   |
| 320  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1355  | r          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1411   |
|      | $\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK1350  | C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1412   |
|      | T(5) = SV1(J + 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1357  | 10         | PZ(1) = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHNI413   |
|      | T(6) = SV1(J+2, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK1359  |            | P2(2) = "[+]252"4<br>P7(3) = 2.871A938E=7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1415   |
|      | GO TO 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK1360  |            | PZ(4) # -2.34496585-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1416   |
| 330  | T(3) = SV2(J + I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1361  |            | PZ(5) = 3.9806841E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1417   |
|      | T(4) = SV2(J) [2)<br>T(5) = SV2(J) 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1362  |            | pZ(6) = -1.1536133 <u>5</u> -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1418   |
|      | T(3) = 3V2(3V2+1)<br>T(5) = SV2(1+2, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CPK1363  | ſ          | 07(1)F 0F-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CKV141A   |
|      | GO TO 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK1 365 |            | 92(1/ = -3.0C+3<br>07(2) = 4.68755=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1421   |
| 340  | T(3) = SV3(J+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1366  |            | 02(3) = -2.3258859E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1422   |
|      | T(4) = SV3(J+ 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1367  |            | nZ(4) = 2.8307087E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1423   |
|      | $T(5) = SY3(J^2, I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1368  |            | 7Z(5) = +6.3912096E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1424   |
|      | $T(0) = 3V3(J^2) T_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1369  |            | 02(6) = 2.3124704E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1425   |
| 350  | T(3) # SVA(10 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1370  | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRN1420   |
| 300  | T(a) = SVa(1) + T(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1372  | C          | P1(1) = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1428   |
|      | T(5) = SV4(J+2, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1373  |            | P1(2) = 1.875F+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRK1429   |
|      | T(6) = SV4(J+2, I2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK1374  |            | $P_1(3) = -3.69_{140}63E-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1430   |
| 360  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1375  |            | P1(4) = 2.7713232E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK[431   |
| C    | DH(K), 1, 11 - DH(K), 1, 11.7(1)97(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CR41370  |            | $P_1(5) = -4.51144215-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRN14J2   |
|      | OM(K)s je m) m OM(K)s je mistejet(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1578  | ~          | DI(0) # 1.2/204032-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Сркіла    |
|      | PM(K1, J+2, 1) = PM(K1, J+2, 1)+T(2)+T(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRK1379  | L.         | 01(1) = 1.5F-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRK1435   |
| _    | $PH(K1, J^{+}2, 2) = PH(K1, J^{+}2, 2) + T(2) + T(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRK1380  |            | 01 (2) = "6.5625E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1436   |
| _370 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1361  |            | 01(3) • 2.8423828E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1437   |
| С    | SULVE FUR CINS) AND DINS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRN1382  |            | $0_1(2) = -6_5525E - 6_51(2) = -7_5525E - 6_51(2) = -7_5525E - 6_5525E - 6_552E - 6_5525E - 6_5525E - 6_5525E - 6_5525E - 6_5525E - 6_552E - 6_552E - 6_552E - 6_5525E - 6_55525E - 6_5552E - 6_5552E - 6_55525E - 6_55525E - 6_55525E - 6_5555E - 6_555525E - 6_55555E - 6_555525E - 6_5555525E - 6_555525E - 6_555525E - 6_555525E - 6_555525E - 6_5555525E - 6_555552E - 6_55552E - 6_555552E - 6_555552E - 6_555552E - 6_55552E - 6_55552E - 6_555552E - 6_555552E - 6_555552E - 6_555552E - 6_555525E - 6_555552525552E - 6_5555255255555525555555552555555555555$ | CRK1438   |
|      | V21 = V2=1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRKISBA  |            | (11) = -3.26423205 = 0.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = 10.01(4) = -3.26423245 = -3.26423245 = -3.2642325 = -3.2642325 = -3.26425 = -3.26425 = -3.26425 = -3.26455 = -3.26455 = -3.26555 = -3.26555 = -3.26555 = -3.26555 = -3.26555 = -3.26555 = -3.26555 = -3.26555 = -3.265555 = -3.265555 = -3.265555 = -3.265555 = -3.2655555 = -3.2655555 = -3.26555555 = -3.2655555 = -3.26555555 = -3.26555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRKIAAO   |
|      | DC 380 J = 1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1385  |            | 01(5) = 7.14311666-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1441   |
|      | FH(1+ J) = P <sup>*</sup> PH(1+ 1+ J)+V2*PH(1+ 2+ J)+P*PH(1+ 3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÇRK1386  |            | 01(6) = -2.5327056E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1442   |
|      | 1 J) -V2+PK(1, 4+J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK1387  | ĉ.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1443   |
| 389  | $FM(2, J) = P^{*}PM(1, 1, J) + VZ_1 + PM(1, 2, J) - P + PM(1, J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CKK1388  | с          | - 1 141F07-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CREI444   |
|      | $\int J_{1} = J_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CEKIJON  |            | D12 B 3-1401<br>D1 = 3-1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CREIAAS   |
|      | 3 *P*P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1391  | ~          | F12 - 200-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1447   |
|      | A(LC + KS) = 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1392  | è          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1448   |
|      | B(LC, NS) = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRK1 393 |            | N = NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRK1449   |
|      | C(LC + NS) = -FM(1 + 2) + OFAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1394  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1450   |
| è.   | DACKSON VE FOR THE OTHER A-DACAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CPK1-94  |            | 1, (x=1+0) 50,50+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBK1451   |
| C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CpK1397  | 20         | x2 = X/2+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1453   |
|      | A(LC, K1) . (PH(K1, 1, 1)+C(LC, NS)+PH(K1, 1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1398  |            | FAC = -XZ+X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRK1454   |
|      | 1 *D(LC, NS))/SC(K))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1399  |            | IF (N) 30+30+60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1455   |
|      | B(LC+ K1) = (PH(K1+ 2+ 1)+C(LC+ NS)+PH(K1+ 2+ 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1400  | +0         | C = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK1456   |
|      | $1 \qquad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRK1401  |            | Y B G<br>DD 54 7 m 1- 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHR1457   |
|      | $= \frac{1}{1} + $ | CRK1403  |            | T = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CRK1450   |
| 390  | 0(LC+ K1) = (PH(K1+ 4+ 1)+C(LC+ N5)+PH(K1+ 4+ 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRK1404  |            | C = FAC+C/(T+T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1460   |
| -    | 1 +D(LC, NS))/SC(K1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1405  |            | TEST = AUS(C)-10.0++(-8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRK1461   |
|      | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRK1406  |            | 1F (TEST) 90+90+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRK1462   |
|      | ENU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHN1407  | <b>4</b> 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRK1463   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 50         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHR1464   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        | e0         | ( - ~ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH11403   |

. .

• • •

•

· · · ·

|     | Y # C                            | CRK146  |
|-----|----------------------------------|---------|
|     | Co 86 1 # 1, 34                  | CRK146  |
|     | 7 = 1                            | CRK1461 |
|     | C = FAC+C/(T+(T+1+0))            | CARING  |
|     | TEST = A85(C)-10+0**(-8)         | CRKLAT  |
|     | IF (TEST) 90,90,70               | CARIA7  |
| 70  | Y # Y+C                          | CRK1477 |
| 80  | CONTINUE                         | CRKIA7  |
| 90  | RETURN                           | CRK1474 |
| 100 | IF (N) 110,110,130               | CRK1475 |
| ŕ   |                                  | CRK1_7  |
| с   |                                  | CRK147  |
| 110 | 00 120 I = 1.6                   | CRK1470 |
|     | D(1) # P2(1)                     | CRKIAT  |
|     | D(1+10) = 07(1)                  | CoR14B  |
| 120 | CONTINUE                         | CRK148  |
|     | GO TO 150                        | CRK14A  |
| c   |                                  | CRK148  |
| 130 | DO 140 I = 1, 6                  | CRK148  |
|     | $0(1) = P_1(1)$                  | CRK148  |
|     | D(1+10) = 01(1)                  | CRK148  |
| 140 | CONTINUE                         | CRK148  |
| 150 | CONTINUE                         | CRK148  |
|     | T1 = 25.0/X                      | CRK148  |
|     | T2 = T1=T1                       | CRK1491 |
|     | P . U(6)+T2.0(5)                 | CRK149  |
|     | DO 160 1 = 1.4                   | CRK149  |
|     | J = 5+1                          | CRK149  |
|     | p = p*t2+D(j)                    | CRK149  |
| 160 | CONTINUE                         | CRK149  |
|     | a = 0(16) +T2+D(15)              | CRK149  |
|     | DO 170 1 = 1+ 4                  | CRK149  |
|     | J # 5+1                          | CRK1491 |
|     | 0 = 0+T2+D(J+10)                 | CRK149  |
| 170 | CONTINUE                         | CRK150  |
|     | Q # Q#T1                         | CRK150  |
| ċ   |                                  | CRKISO  |
|     | T4 = SQRT(X#P1)                  | CRK1503 |
|     | T6 = SIN(X)                      | CRK1504 |
|     | T7 = Cos(x)                      | CRK150  |
| è   |                                  | CRK150  |
|     | IF (N) 180,180,190               | CRK150  |
| č   |                                  | CRK150  |
| 160 | T5 = { (P-Q) +T6+ (P+Q) +T7} /T4 | CRK150  |
|     | GC TO 200                        | CRKISI  |
| 190 | T5 # ((P+Q)#Ĩ6→(P-Q)#T7)/T4      | CRK151  |
| 200 | Y = 15                           | CRK151  |
|     | RETURN                           | CRK151  |
|     | END                              | CRK1514 |

APPENDIX 4.3

.

• .

- .

.

-

٠

۰.

.

GUIDE FOR DATA INPUT

· · · · ·

.

# CRAKDX GUIDE FOR DATA INPUT

.

.

•

with supplementary notes

extract from

## FLEXIBLE PAVEMENT SYSTEM - SECOND GENERATION, INCORPORATING FATIGUE AND STOCHASTIC CONCEPTS

by

Surendra Prakash Jain

December 1971

#### CRAKDX GUIDE FOR DATA INPUT

## PROGRAM DESCRIPTION (one card)

| Alphanumeric | 8A10 |  |    |
|--------------|------|--|----|
| 1            |      |  | 80 |

.

### MATERIAL PARAMETERS (one card)

| NL   | NM   | LDDF   | LNDF   | Y      | GR     | Qo    | Q1    | Q <b>2</b> | TEST  |
|------|------|--------|--------|--------|--------|-------|-------|------------|-------|
| I 10 | I 10 | F 10.0 | F 10.0 | F 10.0 | F 10.0 | A2    | A2    | A2         | F510  |
| 1    | 11   | 21     | 31     | 41     | 51     | 61 62 | 66 67 | 71 72      | 76 80 |

- NL Number of load groups.
- NM Number of materials (maximum of five).

· ·

- LDDF Load distribution factor, ratio.
- LNDF Lane distribution factor, ratio.
- Y Design period, years.
- GR Traffic growth rate, ratio. Leave blank if actual traffic data is given.
- Qo Provide NO if the actual traffic data for each month is not given.
- Q1 Provide NO if the monthly traffic percentage does not vary.
- Q2 Provide NO if elastic modulus values of the different materials do not vary monthly.
- TEST Leave blank if calculations for both cracking index and rut depth. Provide 1.0 for cracking index only. Provide 2.0 for rut depth only.

### Page 1 of 4

Page 2 of 4

WHEEL LOAD DATA (NL cards)

| L1     | L2     | N      | TIRE   |  |
|--------|--------|--------|--------|--|
| F 10.0 | F 10.0 | F 10.0 | F 10.0 |  |
| 1      | 8      | 21     | 31 40  |  |

.

L1 - L2 Axle load range, kips.

N Number of axle applications in wheel load group for first year. Leave blank if actual monthly traffic data for each year is given.

TIRE Tire pressure, PSI.

| MATERIAL DATA (MM CATUS II $QZ = NO$ , NM $\chi Z$ Catus II $QZ$ IS not | MATERIAL | DATA (NM | cards if | Q2 = NO | $, NM \times 2$ | cards if | Q2 | is not | NO' |
|-------------------------------------------------------------------------|----------|----------|----------|---------|-----------------|----------|----|--------|-----|
|-------------------------------------------------------------------------|----------|----------|----------|---------|-----------------|----------|----|--------|-----|

. .

|   | MAT    | TMIN   | NU   | CONF | SIG    | E(1)   | E(2)   | E(3)   | E(4)   |    |
|---|--------|--------|------|------|--------|--------|--------|--------|--------|----|
| [ | A 10   | F 10.0 | F5.0 | F5.0 | F 10.0 | ٦  |
| 1 |        |        | 21   | 26   | 31     | 41     | 51     | 61     | 71 6   | 50 |
|   | E(5)   | E(6)   | Е (  | 7)   | E(8)   | E(9)   | E(10)  | E(11)  | E(12)  |    |
|   | F 10.0 | F 10.0 | F    | 10.0 | F 10.0 | T  |
| 1 |        | 11     | 21   |      | 31     | 41     | 51     | 61     | 71 8   | 30 |

MAT Material identification

TMIN Thickness of material, inches. Leave blank for subgrade.

NU Poisson's ratio.

CONF Confidence level for elastic modulus.

E Elastic modulus mean value. If  $Q^2 = NO$ , provide one constant value. If  $Q^2$  is not NO provide one value for each month.

SIG Standard deviation of elastic modulus, expressed as a percent of mean modulus, i.e., coefficient of variation, percent.

· · · ·

# Page 3 of 4

| ł                                                                                                                                                                                                                                                                                                     | A                          |                         | В                        | log S                         | D                                 | LN                          |                             |              |              |              |        |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|--------------------------|-------------------------------|-----------------------------------|-----------------------------|-----------------------------|--------------|--------------|--------------|--------|--------|--------|
| F                                                                                                                                                                                                                                                                                                     | 10.0                       | F                       | 10.0                     | F 10.                         | 0                                 | F 10.0                      |                             |              |              |              |        |        |        |
| 1                                                                                                                                                                                                                                                                                                     | _                          |                         | 21                       | <br>[                         | 31                                |                             | 40                          |              |              |              |        |        |        |
| A                                                                                                                                                                                                                                                                                                     | Con                        | stant of                | fatigue                  | curve N                       | $= A\left(\frac{1}{c}\right)^{E}$ | •                           |                             |              |              |              |        |        |        |
| B Slope of fatigue curve.                                                                                                                                                                                                                                                                             |                            |                         |                          |                               |                                   |                             |                             |              |              |              |        |        |        |
| log SD Log standard deviation of fatigue life.                                                                                                                                                                                                                                                        |                            |                         |                          |                               |                                   |                             |                             |              |              |              |        |        |        |
| LN                                                                                                                                                                                                                                                                                                    | LN Confidence level for N. |                         |                          |                               |                                   |                             |                             |              |              |              |        |        |        |
| MONTHLY<br>TRAF<br>(1)                                                                                                                                                                                                                                                                                | TRAFFI<br>TRAF<br>(2)      | C PERCEN<br>TRAF<br>(3) | TAGES (on<br>TRAF<br>(4) | ne card if<br>TRAF T<br>(5) ( | QO is NO<br>RAF TRA<br>6) (7)     | ) and Q1 i<br>F TRAF<br>(8) | is not NO)<br>F TRAF<br>(9) | TRAF<br>(10) | TRAF<br>(11) | TRAF<br>(12) |        |        |        |
| F 5.0                                                                                                                                                                                                                                                                                                 | F 5.0                      | F 5.0                   | F 5.0                    | F 5.0 F                       | 5.0 F 5                           | 5.0 F 5.                    | .0 F 5.0                    | F 5.0        | F 5.0        | F 5.0        |        |        | _      |
| i61116212631364146515660TRAF(I)Traffic percentage for Month I.If Q1 = NO, a value of 0.0833 will be assumed for each month.<br>No card is needed if actual traffic data for each month is given.ACTUALTRAFFIC DATA (number of cards = number of design years x number of load groups if Q0 is not NO) |                            |                         |                          |                               |                                   |                             |                             |              |              |              |        |        |        |
| YR                                                                                                                                                                                                                                                                                                    |                            | TR(1)                   | TR(2)                    | TR(3)                         | TR(4)                             | TR(5)                       | TR(6)                       | TR(7)        | TR(8)        | TR(9)        | TR(10) | TR(11) | TR(12) |
| A8                                                                                                                                                                                                                                                                                                    |                            | 16                      | 16                       | 16                            | 16                                | 16                          | 16                          | 16           | 16           | 1.6          | 16     | 16     | 16     |
| ł                                                                                                                                                                                                                                                                                                     |                            | 9                       | 16                       | 22                            | 28                                | 34                          | 40                          | 46           | 52           | 58           | 64     | 69     | 76 80  |
| YR<br>TR(1)                                                                                                                                                                                                                                                                                           | Year<br>Mont               | identif:<br>hly traf:   | ication.<br>fic from     | January t                     | o Decembe                         | r.                          |                             |              |              | ·            |        |        |        |

Provide a full set of traffic data for each load group separately and arrange the sets in the same sequence as in wheel load group.

FATIGUE CURVE DATA


# DENSITY AND PRESSURE PARAMETERS (NM/2 CARDS)

| F10.0 | F10.0 | F10.0 | F10.0 | F10.0 | F10.0 |  |
|-------|-------|-------|-------|-------|-------|--|
| 1 10  | 20    | 30    | 40    | 50    | 60    |  |

•

R(I) Unit weight of material I (lb/cu in)

EM(I) Parameter to calculate correct radial pressure for given curve for base and subbase. Leave blank if regression equation in N, Zl, Z3, and E is given. Leave blank for subgrade.

DRC(I) Radial pressure for which curves are given for material I.

APPENDIX 4.4

**c** 

.

•

.

.

-

٠

.

INPUT DATA SAMPLE

APPENDIX 4.4. INPUT DATA SAMPLE

| IDENTIFICATION | A4.4 I | NPUT DATA | SAMPLE    |            | CODED BY  | JAIN                             | DATE_      | JULY 30,71 | PAGEOF     |
|----------------|--------|-----------|-----------|------------|-----------|----------------------------------|------------|------------|------------|
| i 5            | 10     | 15 20     | 25 30     | 35 40      | 45        | 50 55                            | 60         | 65 70      | 75 80      |
| CRACKING       | INDEX  |           | UT DEPTH  | NDEX EXAMP | LE PROBLI | EM                               |            |            |            |
|                | 1      | 4         | 1.0       | 1.0        | 3.        |                                  |            |            |            |
| 6              | . 0    | 6.0       |           | 42.3       |           |                                  |            |            |            |
| A.CONCRE       | тε     | 1.0       | 0.3 0.25  | 25.0       | 1.600000  | .0 14200                         | $\infty.o$ | 1370000.0  | 900000.0   |
| 600000.        | 2 40   | boocd.p   | 350000.0  | 300000.0   | 420000    | 0 6500                           | 0.00       | 830000.0   | 1310000.0  |
| BASE'          |        | 3.0       | 0.4 0.25  | 25.0       | 24000.0   | 24000                            | .a         | 24000.0    | 15600.0    |
| 18000.0        | 19     | 600.a     | 21600.0   | 23200.0    | 24000.0   | 24.000                           | .0         | 24000.0    | 24000.0    |
| SUBBASE        |        | 4.0       | 0.45 0.25 | 25.0       | 13200.0   | 13200                            | . a        | 13200.0    | 7500.0     |
| 8600.0         | e      | 0.006     | 10800.0   | 11660.0    | 12200.0   | 12400                            | . 0        | 12800.0    | 13200.0    |
| SUBGRADE       |        |           | 0.50 0.25 | 25.0       | 6600.0    | 6600                             | .0         | 6600.0     | 3600.0     |
| 4300.0         | 4      | 900.0     | 5400.0    | 5300.0     | 610d.d    | 6200                             | . a        | 6400.0     | 6600.0     |
| 6.5E-          | >7     | 3.18      | 0.25      | 0.05       |           |                                  |            |            |            |
| FIRSTYR        |        |           |           |            | 4         | 00 4700                          | 14600      | 2 16900 2  | 3200 17700 |
| SECONDYR       | 21900  | 17100     | 32900 337 | 00 39900 3 | 8600 370  | 00 37700                         | 3750       | 31500 7    | 3400 85200 |
| THIRDYR        | 73500  | 74000     | 73000 671 | 00 65600 6 | 3700 741  | 00 54800                         |            |            |            |
| 0.08           |        |           |           | 0.08       |           |                                  |            |            |            |
| 0.08           | 10     | 15 20     | 25 30     | 0.07 *     | 45        | <sup>50</sup> -3.5 <sup>54</sup> | 60         | 65 70      | 75 80      |

277

APPENDIX 4.5

٠

-

.

\*

CRACKING INDEX AND RUT DEPTH INDEX EXAMPLE PROBLEM

CRACKING INDEX AND RUT DEPTH INDEX EXAMPLE PROBLEM

. . . .

N # 6.5E-07 \* (1/E) +\* 3.18 LOG STANDARD DEVIATION OF .25 AND CONFIDENCE LEVEL .05

#### TANGENTIAL STRAIN

LOAD 6 DEPTH 1 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER MEAN VALUES 2.027E-04 2.076E-04 2.089E-04 3.365E-04 3.073E-04 2.666E-04 2.284E-04 1.948E-04 1.514E-04 2.232E-04 2.221E-04 2.105E-04 CONFIDENCE VALUES 2.438E-04 2.497E-04 2.513E-04 4.048E-04 3.696E-04 3.207E-04 2.748E-04 2.343E-04 1.822E-04 2.685E-04 2.671E-04 2.532E-04

### N TABLE - ACTUAL PROM TRAFFIC DATA INPUT

#### APRIL JANUARY FEBRUARY MARCH JUNE HÂY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER JULY LOAD 6

FIRST YR -0 14600 SECONDYA 16900 37500 380 YEAR 31500 -0

#### N TABLE - THEORETICAL

LOAD 6

• •

| CONF  | JANUARY I      | FEBRUARY | MARCH     | APRIL   | HAY      | JUNE     |
|-------|----------------|----------|-----------|---------|----------|----------|
| LEVEL | <b>ان ان ا</b> | AUGUST   | SEPTEMBER | OCTOBER | NOVEMBER | DECEMBER |
| .050  | 77798          | 72 095   | 70632     | 15516   | 20709    | 32529    |
|       | 53184          | 88304    | 196567    | 57224   | 58188    | 68955    |
| MEAN  | 360778         | 334332   | 327547    | 71953   | 96036    | 150848   |
|       | 246635         | 409496   | 911550    | 265370  | 269841   | 319767   |

#### CRACKING INDEX AND RUT DEPTH INDEX EXAMPLE PROBLEM

| ALE LOAD   | AXLE LOAD | TIRE     | N INITIAL |
|------------|-----------|----------|-----------|
| RANGE.KIPS | Mean+KIPS | PRESSURE | Axle Appl |
| 6 - 6      | .6.00     | 42+30    | =0        |
|            |           |          |           |

· · · ·

| LOAD DISTRIBUTION FACTOR. | RATIO | 1.00 |
|---------------------------|-------|------|
| LANE DISTRIBUTION FACTOR. | RATIO | 1.00 |
| DESIGN PERIOD. YEARS      |       |      |

#### MATERIAL PARAMETERS

| MATERIAL        | A.CONCRET | E BASE | SUB BASE | SUBGARDE |
|-----------------|-----------|--------|----------|----------|
| THICKNESS       | 1.00      | 3.00   | 4.00     | <b>-</b> |
| POISSONS RATIO  | *30       | +40    | .45      | •50      |
| COF VAR PERCENT | 25.00     | 25.00  | 25+00    | 25.00    |

VARIATIONS OF E VALUES IN SPACE AND TIME

| MATERIAL    | CONF        | UANUAF  | RY FEBRUA | RY MARCI  | A APRIL | - MAY    | JUNE     |
|-------------|-------------|---------|-----------|-----------|---------|----------|----------|
|             |             | JULY    | AUGUST    | SEPTEMBER | OCTOBER | NOVEMBER | DECEMBER |
| A, CONCRETE | • 25        | 1330200 | 1180553   | 1138984   | 746238  | 498825   | 332550   |
|             | 5           | 90961   | 249413    | 3491775   | 540394  | 690041   | 1089101  |
|             | MĒAN        | 1600000 | 1420000   | 1370000   | 900000  | 600000   | 400000   |
|             | 3           | 50000   | 300000    | 4200000   | 650000  | 830000   | 1310000  |
| BASE        | •Z5         | 19953   | 19953     | 19953     | 12969   | 14965    | 16295    |
|             |             | 17958   | 19288     | 19953     | 19953   | 19953    | 19953    |
|             | MËAN        | 24000   | 24000     | 24000     | 15600   | 18000    | 19600    |
|             |             | 21600   | 23200     | 24005     | 24000   | 24000    | 24000    |
| SUB BASE    | <u>•</u> 25 | 10974   | 10974     | 10974     | 6235    | 7150     | 8147     |
|             |             | 8979    | 9694      | 10143     | 10309   | 10642    | 10974    |
|             | MEAN        | 13200   | 13200     | 13200     | 7500    | 8600     | 9800     |
|             | · .         | 10800   | 11660     | 12200     | 12400   | 12800    | 13200    |
| SUBGARDE    | :25         | 5487    | 5487      | 5487      | 2993    | 3575     | 4074     |
|             | -           | 4489    | 4822      | 5071      | 5155    | 5121     | 5287     |
|             | MEAN        | 6600    | 6600      | 6600      | 3600    |          | 4900     |
|             |             | 5400    | 5800      | 6100      | 6200    | 6400     | 6600     |

#### CRACKING INDEX AND BUT DEPTH INDEX EXAMPLE PROBLEM

MONTH CONF A CI (NAN)T LOG(NAN)T ĸ L08 30 .0539 3.326E+00 5.220E-01 4.143E-01 3.48E-01 3.64E-01 3.64E+02 NEAN 7,1728E-01-1,4431E-01 .0539 4.338E+00 6.373E-01 4.143E-01 7.00E-02 4.72E+01 4.72E+02 MEAN 9.3538E-01-2.9012E-02 .0539 4.971E+00 6.965E+01 4.143E-01-7.29E-02 5.29E-01 5.29E+02 #EAN 1.0720E+00 2.0203E+02 .0539 5.423E+00 7.343E+01 4.143E-01-1.64E-01 5.65E+01 5.65E+02 MEAN 1.1695E+00 6.7984E+02 .0539 5.620E+00 7.497E+01 +.143E-01-2.01E-01 5.80E-01 5.80E+02 #EAN 1,2118E+00 8.3432E-02 .0539 6.266E+00 7.970E=01 4.143E-01-3.16E-01 6.24E-01 6.24E+02 MEAN 1.3512E+00 1.3073E-01 +0539 4.914E+00 8.397E-01 4.143E-01-4.19E-01 6.62E-01 6.62E+02 PEAN 1.4909E+00 1.7346E-01 0539 7.458E+00 8.726E-01 .0539 4.143E-01-4.98E-01 6.91E-01 6.91E+02 HEAN 1.6082E+00 2.0634E-01 7.863E+00 8.956E-01 . 0539 4.143E-01-5.53E-01 7.10E-01 7.10E+02 \*EAN 1+6955E\*00 2+2930E-01 -0539 8.881E+00 9.485E-01 #EAN 1.9151E+00 2.8218E-01 4.143E-01-6.81E-01 7.52E-01 7.52E+02 .0539 1.009E+01 1.004E+00 4.143E-01-8.15E-01 7.92E-01 7.92E+02 HEAN 2.1792E.00 3.3750E-01 +0539 1.482E+01 1.171E+00 4.143E-01-1.22E+00 8.88E=01 8.88E+02 MEAN 3.1967E+00 5.0470E-01 .0539 1.840E+01 1.205E+00 4.143E-01-1.44E+00 9.26E-01 9.26E+02 MEAN 3.9672E+00 3.9849E-01 +0539 2.064E+01 1.315E+00 4.143E-01-1.57E+00 9.41E-01 9.41E+02 HEAN 4.4512E+00 6.4847E-01 .0539 2.190E+01 1.341E+00 4.143E-01-1.63E+00 9.48E-01 9.48E+02 NEAN 4.7232E+00 6.7424E-01 .0539 2.268E+01 1.356E+00 4.143E-01-1.66E+00 9.52E-01 9.52E+02 HEAN 4.8907E+00 6.8938E-01 .0539 2.300E+01 1.362E+00 4.143E-01-1.68E+00 9.53E=01 9.53E+02 MEAN 4.9606E+00 4.9554E-01 +0539 2.430E+01 1.386E+00 4.143E-01-1.74E+00 9.89E=01 9.59E+02 #EAN 5+2399E+00 7+1932E-01 +0539 2.524E+01 1.402F+00 4+143E=01=1+78E+00 9+62E=01 9+62E+02 HEAN 5.4429E.00 7.3583E-01 .0539 2.524E+01 1.402E+00 \*.143E-01-1.78E+00 9.62E-01 9.62E+02 NEAN 5+4429E+00 7.3583E-01

#### CRACKING INDEX AND RUT DEPTH INDEX EXAMPLE PROBLEM

.

•

٠

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

### N ACTUAL / N THEORETICAL

|            |              |             |             | VAL        |             |               |
|------------|--------------|-------------|-------------|------------|-------------|---------------|
| LOAU 6     |              |             |             |            |             |               |
| YEAR CONF  | JANUARY      | FEBRUARY    | MARCH       | ADBTI      | MAY         | UNE           |
| • #••• ••• | JULY         | AUGUST      | SEPTEMAE    | BOCTOBER   | NOVEWBER    | DECEMBER      |
| 1 .054     | 0.           | 0.          | 0.          | 0.         | 0.          | d.            |
|            | - 0 <b>.</b> | 0.          | 0.          | 6.990      |             | 07 7 117F-01  |
| MEAN       | 0,           | 0.          | 0.          | 0.         | 0.          |               |
|            | Ŭ 0.         | · 0.        | 0.          | 1.5078     | -03 1.742E  | -02 4.966E-02 |
| 2 .054     | 2.172E-0     | 1 3.218E-01 | 2.506E-01   | 1.411E+00  | 8.257E-01   | 1.0112+00     |
|            | 6,33         | 6E-01 4.518 | E-01 1.9648 | -01 6.466  | -01 6.479E  | -01 5.438E-01 |
| NEAN       | 4,684E=0     | 2 6.939E-02 | 5.404E-02   | 3.044E-01  | 1.781E-01 : | 2.101E-01     |
|            | 1.36         | 6E-01 9.744 | E-02 4.235  | -02 1.394  | E-01 1.397E | -01 1.173E-01 |
| 3.054      | *.049E-0     | 1 1.018E+00 | 1,206E+00   | 4.737E+00  | 3.573E+00 1 | 2,244E+00     |
|            | 1,20         | 2E+00 7.769 | E-01 3,241E | -01 1.295  | 400 9.418E  | -01 0.        |
| MEAN       | 8,731E-0     | 2 2.195E-01 | 2,601E-01   | 1.0222+00  | 7.705E-01 4 | 6.839g-01     |
|            | 2.72         | 12-01 1.675 | E-01 6,9888 | -02 2.7921 | E-01 2.031E | -01 0.        |
|            |              |             |             |            |             |               |

| MONTH | CONF        | (NAK) T    | LOG (N/N) T  | LOG SD    | ĸ          | <b>A</b> | C1       |
|-------|-------------|------------|--------------|-----------|------------|----------|----------|
| 1     | .0539       | 0          | -            | -         | -          | 0        | 0        |
|       | MEAN        | 0          |              |           |            |          |          |
| 2     | .0539       | 0          | •            | -         | •          | 0        | 0        |
|       | NEAN        | 0          | •            |           |            |          |          |
| 3     | +0539       | 0          | •            | •         | -          | 0        | 0        |
|       | <b>MEAN</b> | 0          | ·•           |           |            |          |          |
|       | +0539       | 0          | -            | •         | •          | 0        | C        |
| _     | PEAN        | 0          | •            |           |            |          |          |
| 5     | .0539       | 0          | -            |           | -          | 0        | 0        |
|       | NEAN        | 0          | -            |           |            |          |          |
| 6     | +0539       | 0          | •            | -         | -          | 0        | 0        |
| -     | MEAN        | 0          | •            |           |            |          |          |
| 7     | .0539       | 0          | •            | -         | •          | 0        | 0        |
| _     | REAN        | 0          |              |           |            |          |          |
| 8     | •053Y       | 0          | -            | •         |            | 0        | 8        |
| •     | MEAN        | 0          |              |           |            |          |          |
|       | +0234       | 0          | •            | •         | •          | 0        | 0        |
|       | PEAN        | 0          |              |           |            |          |          |
| 10    | +0214       | 0,9902-0.  | -2.136E+00   | ++143E=01 | 6.81E+00   | 3.26E-13 | 3.262-10 |
|       | MEAN        | 1.5073E=0. | -4.8218E+00  |           |            |          |          |
| 11    | .0537       | 0.776L 07  | 1.057E+00    | *+143E=01 | 4.16E+00   | 1+57E-05 | 1+57E=02 |
|       | PLAN        | 1.89251-04 | -1.7230E+00  |           |            |          |          |
| 16    | • 0537      | C.995E-0   | -2.236E-01   | ++1+3€=01 | 2.47E+00   | 2.046-03 | 2.04E+00 |
|       | PEAN        | 6.458JL-0  | -1.1844E+00  | 4         |            |          |          |
| 13    | .0337       | 2.18/2-0   | -5*80\E-01   | 4+143E=01 | 5.305+00   | 1+076=02 | 1.07E+01 |
| * 4   | PEAR        | 1.11432-0  |              |           |            |          |          |
| 14    | *0.034      | 9.3852401  |              | **143E=01 | 1./92+00   | 3.051-02 | 3+052+01 |
| 16    | HEAN        | 1.00825-01 |              | A         |            |          |          |
| 13    | *0334       | 1.00YC-00  | J J. IV/E=02 | +1+3£=01  | 1 * 25E+00 | 8+445-05 | 0+44E+01 |
| 14    | AESS        | 2.34862-0  |              | *         | 4 498-41   |          | 3        |
| 14    | 40337       | = 3032E-01 | 3.740E=01    | 4.1432-01 | 0.4/2-01   | 5+245-01 | C+39E+02 |
|       | REAN        | 3+3455401  | 1-C:08C3E+VI |           |            |          |          |

٠

٠

F

.

|               | RADIAL    |            | INUARY . |         |          | EBRUARY  |        | YEAR 1         |            |              |                    |            |            |             |
|---------------|-----------|------------|----------|---------|----------|----------|--------|----------------|------------|--------------|--------------------|------------|------------|-------------|
| LOAD MATERIAL | PRESSURE  | VERTICAL   | STRESS   | PÁDIAL  | VERTIĆA  | L STRESS | RADIAL |                | JANUARY    | FEBRUARY     | MARCH              | APRIL      | HAY        | JUNF        |
|               | (INPUT)   | MEAN C     | DESIGN   | STRESS  | MEAN     | DESIGN   | STRESS | HI-LO-REPT     |            |              |                    |            |            |             |
|               |           |            |          |         |          | -        |        | BASE           | 0.         | 0.           | ñ.                 | 0.         | 0.         | <b>a</b> .  |
| 6             |           |            |          |         |          |          |        | SUB BASE       | 0.         | 0.           | 0.                 | 0.         | 0.         | 0.          |
| BASE          |           | +24.278 -2 | 24.27#   | -1 562  | -24.994  | -24.996  | #1.641 | SUBGARDE       | ñ.         | <b>0.</b>    | A.                 | A.         | ň.         | <u>.</u>    |
| SUB BASE      |           | -12.884 -1 | 2.884    | -1.000  | -13.149  | -13.149  | -1.000 | CUMMIN ATTYF   | ••         | • :          | ••                 | Ve         | v.         | V•          |
| 344 4×45      |           | -111-24 -1 | 1        | -1.00V  | ~******* | -144145  | -11000 | PACE           | •          | ٥.           |                    |            |            |             |
| SURGADOF      | -1.500    | -8.434 -1  | 10.303   | -1 433  | -8.512   | -10.441  | -1.412 |                | A.         | ň.           |                    | 0.         | V.         | <b>U</b> •  |
| 344 4-045     |           |            | 144443   | -1.033  | -01012   | -141141  | -110ar |                | V.         |              | V.                 | 0.         | U.         | 0.          |
|               |           |            |          |         |          |          |        | SUBGARUE       | U.         |              | 0.                 | 0.         | ο.         | 0.          |
|               |           |            |          |         |          |          |        | SINAIN IO B    | CATHWING O | PHUNIM       |                    |            |            |             |
|               |           |            |          |         |          |          |        | HASE           | Q          | Q 1          | 0.                 | 0.         | 0.         | 0.          |
|               |           |            |          |         |          |          |        | SUD BASE       | 0.         | 0.           | 0.                 | 0.         | 0.         | 0.          |
| RANKA MARG    | H         | ******     | APRIL    | ******  | *****    | MAY      | ****** | SUBGAROE       | 0.         | 0.           | 0.                 | 0.         | 0.         | Ö.          |
| VERTICAL STRE | SS RADIAL | VERTICAL   | STRESS   | RADIAL  | VERTICA  | L STRESS | MADIAL | STRAIN THRO    | UGH MONTH  | -            |                    |            |            |             |
| MEAN DESI     | ON STRESS | MEAN       | VESIGN   | STRESS  | MEAN     | DESIGN   | STRESS | BASE           | 0.         | 0.           | ð.                 | é.         | 0.         | 0.          |
|               | -         |            |          |         |          | •        |        | SUB BASE       | 0.         | 0.           | <u>.</u>           | ň.         | <b>N</b> . | <b>Å</b> .  |
| -25.204 -25.2 | 06 -1.667 | -24.304 -  | -24.304  | -ĩ.000  | -27,234  | -27.234  | -1.000 | SUBGARDE       | <u>.</u>   | 0.           | 0.                 | A          | <b>.</b>   | v.          |
| -13.234 -13.2 | 36 -1.000 | -12.416    | 12.414   | -1 0.00 | -13.711  | -13.711  | -1.000 | NERTH          | **         | • 4          |                    | <b>U</b> * |            |             |
| -8.612 -10.4  | A1 -1.631 | -R. 071    | 10.097   |         | -8.754   | -10.479  |        | 8455           | 1.0        |              |                    |            |            |             |
|               |           |            |          | -1.54+  |          |          |        | \$110 0.CF     |            |              |                    |            |            |             |
|               |           |            |          |         |          |          |        | SUBCADOR       | **0        |              |                    |            |            |             |
|               |           |            |          |         |          |          |        | VEDT OFF.      |            |              |                    |            |            |             |
|               |           |            |          |         |          |          |        | TERLE USPA     | 1.0525-05  | 1.0300-05    | 1.042E-0Z          | 2.901E-02  | 2.534E-02  | 2-298E-02   |
|               |           |            |          |         |          |          |        | 4 31KE33       | -1+136.00  |              | -7-972L+00         | *7.431E*00 | -8+114E+00 | *8+\$75E+00 |
|               |           |            |          |         |          |          |        | H STRESS       | -T.92(E=01 | *****12C=01  | -9.914E-01         | -9.Õ44E-01 | -9.352E-01 | -9.948E-01  |
| JURE          |           |            | JULY     |         | *****    | AUGUST   | ****** | DEFORMATION    | AT MONTH   | N            |                    |            |            |             |
| VERTICAL STRE | SS RADIAL | VERTICAL   | STRESS   | RADIAL  | VERTICA  | L STRESS | AADIAL | BASE           | 0.         | 0.           | 0.                 | 0.         | 0.         | 0.          |
| MEAN OESI     | GN STRESS | MEAN       | UESIGN   | STRESS  | HEAN     | DESIGN   | STRESS | SUB BASE       | 0.         | 0.           | 0.                 | 0.         | 0.         | 0.          |
|               |           |            |          |         |          |          |        | SUBGAROE       | 0.         | 0.           | 0.                 | 0.         | ٥.         | 0.          |
| -29,428 -29,4 | 28 -1.328 | -30.121 -  | -30,121  | -1.726  | -30,692  | -30,692  | -2.267 | DEFORMATION    | DUE TO RE  | PITIONS THRO | WAH MONTH          | N_11       |            | ••          |
|               | A8 -1.000 | +15.225 -  | -15.225  | -1.000  | -15.579  | -15.579  |        | BASE           | 0.         | ó.           | <b>0</b> .         |            | ۰.         | A .         |
| -9-315 -11-1  | 80 -1.635 | -9.50A     | 11.119   |         | -9.680   | 11.476   | -1-704 | SUB BASE       |            | <u>.</u>     | <b>0</b> .         | <b>V</b> • | 0.<br>0.   | <b>V</b> •  |
|               |           |            |          | -11040  |          |          |        | SURGADOF       | <u>.</u>   |              |                    |            |            | <b>U</b> •  |
|               |           |            |          |         |          |          |        | OFFORMATION    | AT HONTH   | N - DEE0843  | 104<br>101 AT MONT |            | U+         | Q.+         |
|               |           |            |          |         |          |          |        | BASC COMMITTEE |            | A.           | TON AT MONT        | น้พ=1      |            | -           |
|               |           |            |          |         |          |          |        |                | ¥•         | ¥!           | Q.                 | 0.         | Q.+        | 0           |
|               |           |            |          |         |          |          |        | JUG DASE       | <b>v</b> . | <u>0</u> ±   | 0.                 | 0.         | Q.         | 0.          |
|               |           |            |          |         |          |          |        | SURGAROE       | Q.         | 91           | 0.                 | 0.         | 0.         | 0.          |
| SEPTER        | BER       |            | CTOBER   |         |          | NOVEMBER |        | CUMULATIVE     | DEFORMATIO | N IHROŪGH M  | IONTH N            |            |            |             |
| VERTICAL STRE | SS RADIAL | VERTICAL   | STRESS   | RADIAL  | VERTICA  | L STRESS | RADIAL | BASE           | 0.         | 0.           | 0.                 | 0.         | 0.         | 0.          |
| PEAN DESI     | ON STRESS | MEAN       | DESIBN   | STRESS  | MEAN     | DESIGN   | STRESS | SUB BASE       | Q .        | 0.           | 0.                 | 0.         | 0.         | 0 •         |
|               |           |            |          |         |          | _        |        | SUBGARDE       | 0.         | 0.           | ò.                 | đ.         | Ö.         | Ö.          |
| -17,572 -17.5 | 72 -1.000 | -28,575    | -28,575  | -1,451  | -27,686  | -27,686  | -1.658 | TOTAL CUMUL    | ATIVE DEFO | RHATION      | RUT DEPTH          | ••         |            | · -         |
| -9,911 -9,9   | 11 -1.000 | -14,517    | -14.517  | -1.000  | -14.202  | .14.202  | _1.000 |                | 0.         | 0.           | 0.                 | 0.         | 0.         | ô.          |
| -6,959 -6,8   | 36 -1.623 | -9,169 -   | -11.045  | -1.624  | -9,038   | 10,913   | -1.625 |                | -          |              |                    | **         |            | **          |
|               |           |            |          |         | • • •    | • • • •  |        |                |            |              |                    |            |            |             |
|               |           |            |          |         |          |          |        |                |            |              |                    |            |            |             |

..... DECEMBER VERTICAL STRESS MEAN DESIGN STRESS -25.466 -25.466 -1.700 -13.343 -13.343 -1.000 -8.662 -10.531 -1.631 •

| YEAR 1         |               |             |            |                |            |                    | VEAD 3                                                                     |
|----------------|---------------|-------------|------------|----------------|------------|--------------------|----------------------------------------------------------------------------|
|                | JULY          | AUGUST      | SEPTEMBER  | OCTORER        | NOVENBED   | OFCENAED           |                                                                            |
| HI-LO-REPT     |               |             |            | OC TURER       | NUTCHOCK   | OCCCHRCK           | ATAIN_OFFT                                                                 |
| BASE           | 0.            | 0.          | A.,        | 4. 6005403     | A 7005.03  | 1 4418.04          |                                                                            |
| SUB BASE       | 0.            | <b>0</b> .  | ŏ.         | 4 400000-02    | 4 7005.03  | 1.4002.404         |                                                                            |
| SUBGARDE       | 0.            | <b>0</b> .  | A .        | 4.000000000    | 4 7000.03  | 1.4000-04          | SUBSECT 1000000 1000000 1000000 20000000000000                             |
| CUMMIN ATTY    | ¢             | • •         | U •        | 4.0005.005     | ##100F#03  | 1++005+0+          | 3080805 1.0405404 5.3505404 1.1705404 2.1805404 1.1105404 3.540540         |
| BASE           | - o.          | <b>6</b> .  | •          |                |            |                    |                                                                            |
| SUB BASE       | <b>0</b> .    | 0.          | 0.         | 4-000E+02      | 2+100E+03  | 1.970E+04          | EASE 3.600E+04 3.980E+04 7.750E+04 9.940E+04 1.163E+03 1.494E+0            |
| SUBGAROF       | 0.            | 0.          | 0.         | 4 - 00 0E + VZ | 2+1005+03  | 1+970E+04          | SUB BASE 3.500E+04 3.980E+04 7.750E+04 9.940E+04 1.163E+03 1.494E+03       |
| STRATH TO      | BEGINNING AS  | MÖNNE       | 0.         | ++000E+0Z      | 2+100E+03  | 1.9702+04          | SUBGARDE 3.600E+04 5.980E+04 7.750E+04 9.940E+04 1.165E+05 1.494E+0        |
| RASE           | CONTRACTOR OF | 00010       |            |                |            |                    | STRAIN TO BEGINNING OF MONTH                                               |
| SIG BACE       | <b>.</b>      | N.          | 0.         | 0.             | 2+929E+00  | 2 <b>.933E+</b> 00 | BASE 3.191E+00 3.481E+00 3.661E+00 4.334E+00 5.509E+00 5.950E+0            |
| SUGGADOE       | <b>v</b> •    | V.          | 0.         | 0.             | 1.575E+00  | 1+637E+00          | SUB BASE 1.679E+00 1.741E+00 1.779E+00 1.655E+00 1.803E+00 1.941E+0        |
| STDATE THO     |               | N.          | σ.         | 0.             | 7.020E-01  | 1.06ĨE+00          | SUBGARDE 1.205E+00 1.363E+00 1.464E+00 1.201E+00 1.572E+00 1.895E+0        |
| JINAIN INK     | OUGH HUNTH    |             |            | -              |            | -                  | STRAIN THROUGH HONTH                                                       |
| DAJE           | Q+            | Q .         | 0.         | 3+000E+00      | 3.567E+00  | 3.3536+00          | 8ASE 3.377E+00 3.631E+00 3.741E+00 4.427E+00 5.581E+00 6.063E+0            |
| SUB BASE       | 0.            | 0.          | 0.         | 1.603E+00      | 1.7172+00  | 1.726E+00          | SUB BASE 1.714E+00 1.771E+00 1.795E+00 1.471E+00 1.613E+00 1.956E+0        |
| SUBGARDE       | Q.            | 0.          | 0.         | 7.293E+01      | 1.1912+00  | 1.294E+00          | SUBGARDE 1.300E+00 1.446E+00 1.508E+00 1.538E+00 1.600E+00 1.946E+0        |
| DEPTH          |               |             |            |                |            |                    | DEPTH                                                                      |
| BASE           | 3.0           |             |            |                |            |                    | 849F 3-6                                                                   |
| SUB BASE       | 4.0           |             |            |                |            |                    |                                                                            |
| SUBGARDE       |               |             |            |                |            |                    |                                                                            |
| VERT, OSP.     | 2.108E-02     | 1.983E-02   | 1.598E+02  | 1.8018+02      | 1.7338-02  | 1.6448-02          |                                                                            |
| V STRESS       | -8.864E+00    | -9.040E+00  | -6.319E+00 | -8.5295+00     | #8.398F.00 | -8.0235+00         | V STORS - 1902-100 - 19030-00 - 19070-00 - 19070-00 - 19070-00 - 29070-00  |
| R STRESS       | -1.026E+00    | -1.064E+00  | -9.831E-01 | -0.0405-01     | -0,852F_01 | -0.0125-00         |                                                                            |
| DEFORMATIO     | N AT MONTH N  |             |            |                |            | -444135-01         | x 3(M533 =343%(E_A) =243132%=01 =343145401 =340445=01 =3432%E=01 =343485=0 |
| 8ASE           | 0.            | 0.          | ۰.         | 8.000E=03      | 1.0708-01  |                    | DEFURNATION AT FUNNIN N                                                    |
| SUB BASE       | <b>0</b> .    | 0.          |            | 014972-02      | 4 9475 47  | 1+0000-01          | BASE 1.013E-01 1.089E-01 1.128E-01 1.328E-01 1.674E-01 1.820E-0            |
| SUBGAROE       | ŏ.            | 0.          | Å.         | 1 4705-01      | 1 7020-01  | 0:0012:02          | JUB BA32 8.8302"02 1.080%=02 7.1822=02 6.6832=02 7.2512=02 7.8232=0        |
| OEFORMATIO     | N DUE TO REP  | TTIONS THR  | HAN HONTH  | 1011           | 1910cCeAS  | 2.0000001          | SUBGARDE 2.09VE-01 2.2316-01 2.3408-01 1.982E-01 2.429E-01 2.853E-0        |
| BASE           | 0.            | 0.          |            | (4+1)          |            |                    | DEFORMATION DUE TO REPITIONS FRROUGH MONTH (N-1)                           |
| SUA BARE       |               | 0           | 0.         | 0 +            | 7.877E=02  | 8-800E-02          | BASE 9.5/4E-02 1.044E-01 1.098E-01 1.300E-01 1.653E-01 1.785E-0            |
| SUBBADOE       | 0.            |             | 0.         | 0.             | 0.298E-04  | 6.5482-02          | JUB BASE 6,701E-02 6,964E-02 7,118E-02 6,622E-02 7,213E_02 7,763E-0        |
| DEFORMATIO     | N AT MONTH N  |             | Q.         | 0.             | 1.050E-01  | 1.640E-01          | SUBGARDE 1.902E-01 2.123E-01 2.271E-01 1.923E-01 2.386E-01 2.778E-0        |
| BACE DEPENDENT | n at ryath n  | - UEF URMAS | ION AT HON | TH N-1         |            |                    | DEFORMATION AT MONTH N - DEFORMATION AT MONTH N=1                          |
| CHOL DACE      | 0             | N.F         | 0.         | 8.9992-02      | 2+824E-02  | 1+2582-02          | 845E 545E-03 4.520E-03 2.400E-03 2.806E-03 2.159E-03 3.470E-0              |
| JUD BASE       | 0.            | 9±          | 0.         | 6.412E-02      | 5.690E=03  | 3.3348-03          | SUB BASE 1.549E=03 1.220E=03 6.393E=04 6.122E=04 3.852E=04 5.954E=0        |
| SUDGARDE       | 0.            | 0 <u>+</u>  | Q.         | 1.0796-01      | 7.318E-02  | 3.60ĨE-02          | SUBGARDE 1.574E=02 1.284E=02 6.839E=03 5.890E=03 4.337E=03 7.531E=0        |
| CUMULATIVE     | DEFORMATION   | THROUGH H   | ONTH N     |                |            |                    | CUMULATIVE DEFORMATION THROUGH MONTH N                                     |
| DADE           | 0.            | 0.          | 0 -        | 8+999E+02      | 1.1825-01  | 1+308E-01          | BASE 1.364E-01 1.409E-01 1.433E-01 1.461E-01 1.483E-01 1.518E-0            |
| SUB BASE       | 0+            | 0.          | 0.         | 6+412E-02      | 6-981E-02  | 7.314E=02          | SUB BASE 7,469E+02 7,591E+02 7,655E-02 7,716F-02 7,755F-02 7,814F-0        |
| SUBGAROE       | 0.            | 0           | 0.         | 1.0798-01      | 1.011E-01  | 2.171E-01          | SUBGARDE 2.329E+01 2.457E+01 2.525E+01 2.584E+01 2.628E+01 2.707E+0        |
| TOTAL CUPUL    | LATIVE DEFORM | PATION      | RUT DEPTH  | •              |            |                    | TOTAL CUPULATIVE DEFORMATION BUT DEPTH                                     |
|                | 0.            | 0.          | 0.         | 2.620E-01      | 3.692E-01  | 4.21]E=01          | 4.440E-01 4.625E-01 4.724E-01 4.817E-01 4.866E-01 5.002E-0                 |

282

•

• • •

| YEAR 🤈    |               |                  |             |             |            |           |
|-----------|---------------|------------------|-------------|-------------|------------|-----------|
|           | JULY          | AUGUSŢ           | SEPTEMBER   | OCTOBER     | NOVEMBER   | DECEMBER  |
| HI-LO-REP | τ             |                  |             |             |            |           |
| BASE      | 3.370E+04     | 3.990E+04        | 3.860E+04   | 3.700E+04   | 3.770E+04  | 3.756E+0  |
| SUB BASE  | 3.370E+04     | 3.990            | 3.8602+04   | 3.700E+04   | 3.770E+04  | 3.750E+0  |
| SUBGARDE  | 3.370E+04     | 3.990E+04        | 3.860E+04   | 3.700E+04   | 3.770E.04  | 3.750E+0  |
| CUMMULAT1 | VE            | -                |             |             |            |           |
| BASE      | 1.831E+05     | 2.2302+05        | 2.616E+05   | 2.9865+05   | 3-3635-05  | 3.7305+0  |
| SUB BASE  | 1,831E+05     | 2.230E+05        | 2.616E+05   | 2.9865+05   | 3-3636-05  | 3.73#F+0  |
| SUBGARDE  | 1.8316+05     | 2.2302+05        | 2.616F+05   | 2 0845+05   | 3.3435.05  | 3.7365.0  |
| STRAIN TO | BEGINNING OF  | MONTH            |             | 2 49002 103 | 319095404  | 361362-0  |
| BASE      | 5.702F+00     | 5.194E+00        | 2.9325+00   | E 7305+00   | 5 0725.00  | A 225E+0  |
| SUR RACE  | 2.0085.000    | 2.0676.00        |             | 311372000   |            | ++233E+0  |
| SUBGADOF  | 2.0596+00     | 2.2028400        | 0 8055-00   | 1.4625+00   | 1.9036+00  | 1.0436+0  |
| STOATN TH |               |                  | A**A?E*01   | 2.021F+00   | 1+2125+00  | 1.7845+0  |
| DICALN NT |               |                  |             |             |            |           |
| AND DIG   | 3.1905.00     | 242062400        | 2.764F+00   | 5+795E+00   | 5+116E+00  | 4-266E+0  |
| SUD DASE  | C.040E+00     | 2.0702+00        | 1-39AE+00   | 1.993E.00   | 1.972E+00  | 1.899E+0  |
| SUBUARDE  | 5.103E+00     | C+240F+00        | 1.000E+00   | Z.047E+00   | 1.996E+00  | 1.802E+0  |
| DEPTH     | _             |                  |             |             |            |           |
| BASE      | 3.0           |                  |             |             |            |           |
| SUB BASE  | 4.0           |                  |             |             |            |           |
| SUBGARDE  |               |                  |             |             |            |           |
| VERT. OSP | . 2.108E-02   | 1.983E-02        | 1.598E-02   | 1.801F-02   | 1.7335-02  | 1.6445-0  |
| V STRESS  | -8.864E+00 -  | -9.040E+00       | -6.319E+00  | -8-5295+00  | -8.3984.00 | -8.822840 |
| R STRESS  | -1.0205+00    | -1.0448+00       | -0 A11F-A1  | -0 0405-01  | -0         |           |
| DEFORMATT | ON AT MONTH N |                  | -4.0316-01  | -**8405-01  | -**938CeAi |           |
| BASE      | 1.7365-01     | 1.5805-01        | A 9475-47   | 1 7395-01   | 1 8385 41  |           |
| SUR BARE  | 6 A786 AAA    | 8.3136-43        | 4 3616-42   | 10/370-01   | 1.3356-01  | 1+2002-0. |
| SUBBAROF  | 3 4445-02     | 1.336-02         | 0.JD10-02   | 7.970E-02   | 1.000E-04  | 7.596E-0  |
| DEEDOWATT | 0. OUE TO DEC | 111008 100       | 100305-01   | 3-0305-01   | €•AR0E+0†  | 2.7952=0  |
| BACC      | UN UNE IN HEP | TITOWA (MM       | OUGH HOWIN  | (N=1)       |            |           |
| CASE CLAF | 1.741E=01     | 1.3386-01        | 8.797E-02   | 1.722E-01   | 1.522E-01  | 1.2708-0  |
| SUD BASE  | 8-030E-02     | 0.207E-02        | 6.313E-02   | 7.940E=02   | 7.859E-02  | 7.5728-0  |
| SUBUARUE  | X.991E-01     | 3+1706+01        | 1.810E-01   | 2.991E-01   | 2.952E-01  | 2.756E-0  |
| UEFORMATI | UN AT MONTH N | - DEFORMA        | TIDN AT MON | TH N=]      |            |           |
| UASE      | 5-245E-03     | 2-157E-03        | 1.102E-03   | 1.677E-03   | 1.319E-03  | 9.843E-04 |
| SAB BUE   | 4.811E-04     | 4.609Ę-04        | 3.814E-04   | 3.055E-04   | 2.729E-04  | 2.4218-0  |
| SUBGARDE  | 6.300E-03     | 6-3405-03        | 2.810E-03   | 3.901E-03   | 3.418E-03  | 2.8178-0  |
| CUMULATIV | E DEFORMATION | THROUGH          | HONTH N     |             |            |           |
| BASE      | 1.543E-01     | 1.565E-01        | 1.576F+01   | 1.5035+01   | 1.6065-01  | 1.6165-0  |
| SUB BASE  | 7.862E-02     | 7.909E-02        | 7.947E-02   | 7 9775-02   | A 004F-02  | 8 0205-0  |
| SUBGARDE  | 2.767E-01     | 2.8306-01        | 2 8588-01   | 2 4075-01   | 2 0315 01  | 2 9505-01 |
| TOTAL CUM | LATIVE OFFOR  | HATTON           | BUT DEPTH   | 5.041C=V1   | L,731C=V1  | 2. 739E=U |
|           | 5.0965-01     | 5-186F-01        | # 229F-A    |             | E 3585 AL  |           |
|           | 200-01        | 100 <u>-</u> -01 | 215516-01   | 2•5805-01   | 3+33pF=01  | 3+378E=0  |

| YEAR 3                |             |              |            |            |               |
|-----------------------|-------------|--------------|------------|------------|---------------|
| JANUARY               | FEBRUARY    | MARCH        | APRIL      | MAY        | JUNF          |
| H1-LD-REPT            |             |              |            |            |               |
| BASE 3.150E+04        | 7.340E+04   | 8.520E+04    | 7.350E+04  | 7.400E+04  | 7.300E+04     |
| SUB BASE 3.150E+04    | 7.340Ē+04   | 8,520E+04    | 7.350E+04  | 7.400E+04  | 7.300E.04     |
| SUBGARDE 3.150E+04    | 7.340E+04   | 8.520E+04    | 7.350E+04  | 7.400E+04  | 7.30jE+04     |
| CUMMULATIVE           |             |              |            |            |               |
| BASE 4.053E+05        | 4.787E+05   | 5.639E+05    | 6.374E+05  | 7+114E+05  | 7.844E+05     |
| SUB BASE 4+053E+05    | 4.787E+05   | 5.639E+05    | 6.374E+05  | 7.114E+05  | 7.844E+05     |
| SUBGARDE 4.053E+05    | 4.7875+05   | 5.639E+05    | 6.374E+05  | 7.114E+05  | 7.844E+05     |
| STRAIN TO BEGINNING O | F MONTH     |              |            |            |               |
| BASE 4.079E+00        | 4.219E+00   | 4.303E+00    | 5.080E+00  | 6.351E+00  | 6.791E+00     |
| SUB BASE 1.854E+00    | 1.8862+00   | 1.903E+00    | 1.773E+00  | 1.911E+00  | 2.044E+00     |
| SUBGAROE 1.681E+00    | 1.7075+00   | 1.817E+00    | 1.495E+00  | 1.906E+00  | Z.Z69E+00     |
| STHAIN THHOUGH HUNTH  | 4 3345.44   |              |            |            |               |
| BASE 4.100E+00        | 4.2705+00   | 4.3342400    | 5.120E+00  | 0.401E+00  | 0.036E+00     |
| 308 BASE 1.8372400    | 1.8420+00   | 1.9122.00    | 1.7802.00  | 1.91/6+00  | 2.0502.00     |
| 50504RUE 1.6772*00    | 1 101492400 | 1-9425400    | 1.5136.00  | 1.4505+00  | C+289E+00     |
|                       |             |              |            |            |               |
|                       |             |              |            |            |               |
|                       |             |              |            |            |               |
| VERT. 05P. 1.425E.02  | 1.6385-02   | 1.6425-02    | 2.0015-02  | 2.5345-02  | 2.2005-02     |
| V STOESS -7.796F+00   | -7-932E+00  | -7.9725+00   | 47.431E+00 | -8-114F-00 | -8.474F+00    |
| R STRESS -9.927F-01   | -9-915E-01  | -9.9146-01   | -9. AAF-01 | -9.352F=01 | -9-8445-01    |
| DEFORMATION AT MONTH  | N           |              | ,          |            |               |
| 6ASE 1.230E-01        | 1.281E-01   | 1.306E-01    | 1.538E-01  | 1.920E-01  | 2.051E-01     |
| SUB BASE 7.436E-02    | 7.581E-02   | 7.649E-02    | 7.118F-02  | 7.669E-02  | 8.199F-02     |
| SUBGARDE 2.671E-01    | 2.795E-01   | 2.863E-01    | 2.421E-01  | 2.923E-01  | 3-354E-01     |
| DEFORMATION DUE TO RE | PITIONS THR | DUGH HONTH   | (N=1)      | ••••       |               |
| 8ASE 1.223E-01        | 1.2668-01   | 1-291E-01    | 1+524E-01  | 1.905E-01  | 2 • 037E = 01 |
| SUB BASE 7.410E-02    | 7.543E-02   | 7.612E-02    | 7.091E-02  | 7.645E-02  | 8.178E-02     |
| SU8GARDE 2.650E=01    | 2+752E-01   | 2.820E-01    | 2.392E-01  | 2.893E-01  | 3.326E-01     |
| DEFORMATION AT MONTH  | N - DEFORMA | TION AT HON' | TH N=1     |            |               |
| BASE 7.295E-04        | 1.532E-03   | 1.516E-03    | 1.362E-03  | 1.494E-03  | 1.363E-03     |
| SUB 8ASE 1.844E=04    | 3-758E-04   | 3.6598-04    | 2.712E-04  | 2.389E-04  | 2+09]E=04     |
| SUBGARDE 2.056E-03    | 4.354E-03   | 4.321E-03    | 2.8495-03  | 3.001E-03  | 2.958E-03     |
| CUMULATIVE DEFORMATIO | N THROUGH   | NONTH N      |            |            |               |
| BASE 1.62JE-01        | 1.038E-01   | 1.654E-01    | 1.667E-01  | 1.682E-01  | 1.695E=01     |
| SUB BASE 4.047E-02    | 8.085E-02   | 8.121E-02    | 8.148E-02  | 8.1725-02  | 8.193E-02     |
| SUBGARDE 2.980E-01    | J:024E=01   | 3.067E-01    | 3.096E-01  | 3.126E-01  | 3.1552-01     |
| IUIAL CUMULATIVE DEPO | HPAILON     | HUT DEPTH    |            |            |               |
| 3.400E-01             | 3+4/16=01   | 3.7J3E=01    | 5.578E-01  | 2.0225-01  | 5.071E-01     |

JULY AUGUST SEPTEMBER OCTORER NOVEMBER DECEMAER HI-LD-REPT BASE 6.710E+04 6.860E+04 6.370E+04 7.410E+04 5.480E+04 0. SUB BASE 6.710E+04 6.860E+04 6.370E+04 7.410E+04 5.480E+04 0. 6.710E+04 6.860E+04 6.370E+04 7.410E+04 5.480E+04 0. SUBGADDE CUMMULATIVE 8.515E+05 9.201E+05 9.838E+05 1.058E+06 1.113E+06 1.113E+06 BASE 8.515E+05 9.201E+05 9.838E+05 1.058E+06 1.113E+06 1.113E+06 8.515E+05 9.201E+05 9.838E+05 1.058E+06 1.113E+06 1.113E+06 SUB BASE SUBGARDE STRAIN TO BEGINNING OF MONTH 8.400E+00 5.755E+00 3.259E+00 6.299E+00 5.539E+00 4.605E+00 2.101E+00 2.153E+00 1.659E+00 2.058E+00 2.034E+00 1.959E+00 BASE SUB BASE 2.416E+00 2.545E+00 1.127E+00 2.285E+00 2.217E+00 1.990E+00 SUBGARDE STRAIN THROUGH HONTH 6,4412+00 5.7832+00 3.2742+00 6.3302+00 5.5582+00 4.6052+00 2,1062+00 2.1572+00 1.6632+00 2.0622+00 2.0372+00 1.0592+00 BASE SUB BASE 2.434E+00 2.562E+00 1.133E+00 2.299E+00 2.226E+00 1.990E+00 SUBGAROE DEPTH BASE 3.0 SUB BASE 4.0 SUBGAROE VERT. 05P+ 2.108E-02 1.983E-02 1.598E-02 1.801E-02 1.733E-02 1.646E-02 V STRESS -8.864E+00 -9.040E+00 -6.319E+00 -8.529E+00 -8.398E+00 -8.022E+00 R STRESS -1.026E+00 -1.064E+00 -9.831E+01 -9.840E+01 -9.852E-01 -9.913E-01 CEFORMATION AT NONTH N CASE 1.932E-01 1.735E-01 9.822E-02 1.899E-01 1.667E-01 1.38jE-01 SUB BASE 8.423E-02 8.627E-02 6.652E-02 8.248E-02 8.148E-02 7.834E-02 SUBGARDE 3.535E-01 3.693E-01 2.071E-01 3.403E-01 3.330E-01 3.075E-01 DEFORMATION DUE 10 REPITIONS THROUGH MONTH (N-1) EASE 1.922E-01 1.726E-01 9.774E-02 1.890E-01 1.662E-01 1.38[E-01 SUB GASE 8.406E-02 8.61E-02 6.638E-02 8.238E-02 8.137E-02 7.834E-02 SUBGARDE 3.509E-01 3.670E-01 2.060E-01 3.381E-01 3.316E-01 3.675E-01 DEFORMATION AT MONTH N = DEFORMATION AT #0NTH N-1 1046E-03 8.479E-04 4.622E-04 9.206E-04 5.602E-04 0. 1.738E-04 1.624E-04 1.443E-04 1.511E-04 1.046E-04 0. 2.567E-03 2.492E-03 1.178E-03 2.141E-03 1.452E-03 0. BASE SUB BASE SUBGAROE CUMULATIVE DEFORMATION THROUGH MONTH N 1.706E-01 1.715E-01 1.726E+01 1.729E-01 1.734E-01 1.734E-01 8.211E-02 8.227E-02 8.241E-02 8.256E-02 8.267E-02 8.267E-02 3.181E-01 3.206E-01 3.218E-01 3.239E-01 3.254E-01 3.254E-01 ATIVE\_DEFORMATION\_ RUT DEPTH BASE SUB BASE SUBGAODE TOTAL CUPULATIVE DEFORMATION 5.709E+01 5.744E-01 5.761E+01 5.794E+01 5.815E+01 5.815E+01

YEAR 3

7

VZE3872 16.02.50 CRK++107+117000.77.CEDC0154+JAIN. 16.02.50 BLOBUP (CRKDEX) 16.02.50 RUN (5) 16.48.22 CTIME 012:100 SEC. RUN\* LEVEL 60\* 16.48.22 LGO. 16.48.30 LOADER UNUSED STORAGE 024420. 16.48.30 - 72000CH 8,569CP 945MS 16.52.10 END - CRKDEX ONT 16.52.11 MS 1231 PRU. 16.52.11 CP 58.072 SEC. 16.52.11 PP 28.178 SEC. 16.52.11 TH 62.994 SEC. 77 (OCTAL)

5 AUG 71 UNIVERSITY OF TEXAS 6600 UT 2

284

٠

.

1

.

APPENDIX 4.6

\*

•

•

-

,

REGRESSION ANALYSIS FOR CRACKING-PATCHING VERSUS ROUGHNESS INDEX

.

STEP01 - STEPHISE REGRESSION - VERSION OF OCT. 15,1968 THE UNIVERSITY OF TEXAS CENTER FOR HIGHWAY RESEARCH HEGRESSION EQUATION FOR LEVENI AND LCP FROBLEM CODE LRSVLC NUMBER OF CASES 95 NUMBER OF ORIGINAL VARIABLES 7 NUMBER OF VARIABLES ADDED 3 TOTAL NUMBER OF VARIABLES 10 NUMBER OF SUB-PROBLEMS 1 INFUT DATA PACBLEM CARD ROBLM LASVEC 95 7 3 1 10 YES YES YES - 3 1 - 1 TRANSGENERATION CANUS TRAGEN 822 1-0.000 TANGEN 910 2 3.000 TRNGEN 1010 2 2.000 LABEL CARD LAE **JLRSVSV** 2 LCP 3 01 Č2 03 7 . 5 - 6 WT NXL LAE BARCTAN 9 COLCP 10 SELCP -0 -0 =0 -0 VARIABLE FORMAT CARD 5F7.1,28X.2F7.1) 3.0000000E+00 0. ٤. 8+0000000E+00 -3.0000000E-01 2.0000000E+00 3.0000000E+00 a.0000000E+00

3.20000000E+01 2.0000000E+n0 Ο. 3.2000000E+01 2.0000000E+n0 8.4500000E-01 2.93000000E+00 3.0000000E+00 R.0000000E+00 3.20000000€+01 2.0000000E+nn 0. 4.0000000E+00 3.20000ň00E+01 0. 1.2000000E+01 2.0000000E+no 6.15000000E-01 2./2000000E+00 \*.0000000E+00 1.20000000E+01 3.20000400E+01 ٥. 2.0000000E+n0 3.00000000E+00 3,20000A00E+01 3.0000000E+00 8.00000000E+00 2.0000000E+00 \$.9000000E-01 2.9600000E+00 3.0000000E+00 3\_0000000E+00 A.0000000E+00 3,20000ñ00E+01 2.0000000E+00 4.0000000E+00 3.0000000E+00 C . 4.0000000E+00 1.80000n00E+01 1.00000000E+n0 -5.9000000E-01 2.400000000++00 4.00000000E+nn 3.000000062+00 \*.0000000E+00 1.80000ñ00E+01 1.0000000E+nn 3.00000000E+00 6. ٥. 8.0000000E+00 1.80000n00E+01 1.000000000000000 3.5000000E-01 2.00000000000000 3.000000U0E+00 1.80000n00E+01 0. R.0000000E+00 1.00000000E+nn €.0000000E=01 2. 4000000 +00 3.000000005+00 Ο. A.0000000E+00 1.80000n00E+01 1.00000000E+00 2.00000000000000 3.00000000E+00 8.0000000E+00 2.40000n00E+01 2.00000000E+00 6.8000000E-01 2.9500000t+00 2.00000000E+00 3.00000000E+00 R.0000000E+00 2.4000000E+01 2.00000000E+nn \$.5000000E-01 2.7500000E+00 2.0000000E+00 3.0000000E+00 R.0000000E+00 2.4000000UE+01 2.0000000€+00 С. 3.0000000E+00 6.0000000E+00 4.0000000E+00 2.40000h00E+01 2.00000000E+n0 3.2000000E-01 1.91000000c+00 3.0000000E+00 6,0000000E+00 2.40000400E+01 4.0000000E+00 2.0000000E+00 Ο. 2.00000000E+00 2.0000000E+00 \*.0000000E+00 1.0000000E+no 3.6000000E-01 1./1000000E+00 Ο. 2.00000000E+00 4.0000000E+00 2.0000000E+00 1.00000000E+00 5-10000000E-01 2.00000000E+00 2.0000000E+00 0. 4.0000000E+00 2.00000000E+00 1.00000000£+00 6.80000000E-01 2.1000000E+00 2.000000U0E+00 2.00000000E+00 0. 4.0000000E+00 1.0000000E+no 1.00000000E+00 3.0000000E+00 0. 2.00n00n00E+00 1.0000000E+nn 1.750000008-01 1.32000000=+00 1.000000U0E+00 3.00000000000000 2.0000000E+00 1.00000000000000 0. 4.10000000E-01 2.0000000E+00 1.00000000E+00 3.00000000000000 2.0000000E+00 1.00000000E+00 0. С. 1.0000000E+no 3.0000000E+00 4.00000000E+00 6.00000000E+00 1.00000000E+00 2.5000000E-01 2.080000000+00 1.0000000E+00 3,0000000E+00 4.0000000E+00 6.00000000E+00 1.00000000E+nn 4.0000000E+00 4.1000000E-01 2.1600000E+00 1.0000000E+00 3.00000000E+00 6.00000000E+00 1.00000000E+10 4.40000000E-01 2.23000000E+00 1.00000000E+00 3,0000000E+00 4.0000000E+00 5.00000000E+00 4.000000U0E+00 C . 3.0000000E+00 4.0000000E+00 1.2000000E+01 1.00000000E+n0 0. 4.60000000E-01 2.260000000+00 4.00000000E+00 3\_0000000E+00 4.0000000E+00 1.20000400E+01 1.0000000E+n0 E. 5000000E-01 2.56000000L+00 4.000000U0E+00 3\_0000000E+00 4.0000000E+00 1.2000000E+01 1,0000000000+00 ٢. 0. 1,0000000E+00 6,000000E+00 4,0000000E+00 6,0000000E+00 1,0000000E+00

| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.000000t+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 00000.00F+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0000000L+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d d600000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.940000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000000000+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.20000002-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,20000n00E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,0000000E+na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3_00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,00000ñ0UE+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00000000±+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1•70000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3200000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.830000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1+110000000+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2+0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5+00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1+0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4+0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5+2700000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2./8000005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-00000-00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-0000000E++0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.5500000E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2./9000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.000000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.2000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +.00000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.200000000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.40000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A+0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40000n00±*01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.040000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8+00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00000004400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e • 18000000E = 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2+[8000000++00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.n0000000E+0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>☆•00000000E+00</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.200000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| €.0000000E~U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.45000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0000000E+0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.20000∧0UE+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2000000E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.02000000000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.71000000++00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.000000U0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2000000UE+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.2700000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.48000000L+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0000000F+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-20000-00E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -6.5500000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9200000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20000:00E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.2000000E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-96000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.200004002-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 300000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 30000005.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.000000E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00000A00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 400000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.340000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0500000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000000010.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e • = 00000000 = 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4800000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00000000 <u>5</u> +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 • 1000000c = 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00000000+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6+00000000C+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000€+nû                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>6</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20000000E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3+59000000E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4600000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>♦</b> •00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.20000000E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000n000nE+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0000000E.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6+00000ñ00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.77000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2+10000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>ή</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.00000ñ0UE+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 <b>.0000</b> 000nE+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2•94000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2+4000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f: •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 <b>.0000010</b> 0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 00000005400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 20000-005401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (100) 00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C+0000000-+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | () •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.3000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.49000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20000n00E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.3000000E+01<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.49000000±+00<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00000000E+00<br>3.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.<br>3. n0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 •<br>0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.200000000E+01<br>6.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.30000000E-01<br>0.<br>1.04000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.49000000±+00<br>0.<br>1.32000000€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.<br>3.00000000E+00<br>3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 •<br>0 •<br>0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.30000000E-01<br>0.<br>1.04000000E-01<br>2.80000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.49000000±+00<br>0.<br>1.32000000€≁00<br>1.9000000€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.000000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 •<br>0 •<br>0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.3000000E-01<br>0.<br>1.04000000E-01<br>2.80000000E-01<br>5.0000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4900000±+00<br>0.<br>1.32000000±+00<br>1.90000000±+00<br>2.30000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.<br>3.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 •<br>0 •<br>0 •<br>0 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.20000000E+01<br>6.00000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>6.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.3000000E-01<br>0.<br>1.64000000E-01<br>2.8000000E-01<br>5.000000E-01<br>5.9000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.49000000±+00<br>0.<br>1.32000000±+00<br>1.30000000±+00<br>2.5000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2000000000000000<br>6.0000000000000000<br>6.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.3000000E-01<br>0.<br>1.04000000E-01<br>2.80000000E-01<br>5.0000000E-01<br>5.9000000E-01<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.49000000±+00<br>0.<br>1.32000000€→00<br>1.9000000€+00<br>2.3000000€+00<br>2.9000000€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2000000000000000<br>6.00000000000000<br>6.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.30000000E-01<br>0.<br>1.64000000E-01<br>2.80000000E-01<br>.5.0000000E-01<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.49000000E+00<br>0.<br>1.32000000E+00<br>1.90000000E+00<br>2.30000000E+00<br>2.56000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.000000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>5.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>3.0000000000000<br>3.000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.200000000000000<br>0.000000000000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000001000<br>1.0000000000000<br>1.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.30000000E-01<br>0.<br>1.04000000E-01<br>2.80000000E-01<br>.5.0000000E-01<br>0.<br>5.70000000E-01<br>C.<br>5.40000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.+9000000E+00<br>0.<br>1.92000000E+00<br>2.3000000E+00<br>2.5000000E+00<br>0.<br>2.5000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0000000000000<br>3.0000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>3.0000000000000<br>3.0000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.200000002501<br>6.00000000500500<br>6.00000000500500<br>6.00000000500500<br>6.00000000500500<br>1.00000000500500<br>1.0000000005001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.3000000E-01<br>0.<br>1.6400000E-01<br>2.8000000E-01<br>5.0000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>E.<br>5.4000000E-01<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. +9000000E+00<br>0.<br>1. 32000000E+00<br>2. 3000000E+00<br>2. 5600000E+00<br>2. 5600000E+00<br>2. 5500000E+00<br>2. 5500000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.200000002401<br>1.2000000004002400<br>6.0000000004002400<br>6.0000000004002400<br>6.0000000002400<br>6.000000002401<br>1.800000002401<br>1.800000002401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.30000000E-01<br>0.<br>1.64000000E-01<br>2.80000000E-01<br>.5.00000000E-01<br>C.<br>5.40000000E-01<br>E.50000000E-01<br>G.<br>3.0000000E-01<br>G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.49000000±+00<br>0.<br>1.32000000±+00<br>2.3000000±+00<br>2.56000000±+00<br>2.45000000±+00<br>2.55000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>5.00000000E+00<br>5.00000000E+00<br>3.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>3.0000000000000<br>3.000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2000000000000000<br>1.20000000000000000<br>6.0000000000000000<br>6.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 2 \cdot 30000000E = 01 \\ 0 \cdot \\ 1 \cdot 64000000E = 01 \\ 2 \cdot 80000000E = 01 \\ \cdot 5 \cdot 90000000E = 01 \\ 0 \cdot \\ 5 \cdot 40000000E = 01 \\ 0 \cdot \\ $ | 1.49000000±+00<br>0.<br>1.9000000±+00<br>2.3000000±+00<br>2.56000000±+00<br>0.<br>2.5000000±+00<br>2.55000000±+00<br>0.<br>1.55000000±+00<br>1.55000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>3.0000000000000<br>3.0000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.0000000E+00<br>8.0000000E+00<br>8.0000000E+00<br>8.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.200000002401<br>1.2000000004002400<br>6.00000000004002400<br>6.0000000000004000400<br>6.000000000004000<br>6.0000000000400<br>1.8000000002401<br>1.8000000002401<br>1.800000002401<br>1.8000000004401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 2 \cdot 30000000E=01\\ 0 \cdot \\ 1 \cdot C4000000E=01\\ 2 \cdot 80000000E=01\\ \cdot \\ 5 \cdot 90000000E=01\\ \cdot \\ 5 \cdot 90000000E=01\\ C \cdot \\ \cdot \\ 5 \cdot 40000000E=01\\ c \cdot \\ 3 \cdot 90000000E=01\\ \epsilon \cdot \\ 5 \cdot 9000000E=01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. +9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5000000 ± +00<br>2. 5000000 ± +00<br>2. 5000000 ± +00<br>1. 5500000 ± +00<br>2. 5200000 ± +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.00000000E+00<br>5.00000000E+00<br>5.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.0000000E+00<br>8.0000000E+00<br>8.0000000E+00<br>9.0000000E+00<br>9.0000000E+00<br>9.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2000000000400<br>1.200000000000000<br>6.000000000000000<br>6.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.30000000E-01<br>0.<br>1.64000000E-01<br>2.80000000E-01<br>5.00000000E-01<br>C.<br>5.40000000E-01<br>C.<br>3.0000000E-01<br>C.<br>3.0000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.4000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.400000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-0000000E-000000E-0000000E-000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. + + 9000000 ± + 00<br>0.<br>1. 32000000 ± + 00<br>2. 3000000 ± + 00<br>2. 5600000 ± + 00<br>2. 4000000 ± + 00<br>2. 4500000 ± + 00<br>2. 5500000 ± + 00<br>2. 5200000 ± + 00<br>0. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>5.00000000E+00<br>3.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.<br>3.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000001E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.30000000E-01<br>0.<br>1.64000000E-01<br>2.80000000E-01<br>5.90000000E-01<br>C.<br>5.40000000E-01<br>C.<br>3.0000000E-01<br>C.<br>3.0000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01<br>C.<br>5.40000000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. 49000000 + 00<br>0.<br>1. 32000000 + 00<br>2. 3000000 + 00<br>2. 56000000 + 00<br>2. 55000000 + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0000000000000<br>3.00000000000000<br>3.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000<br>0.2000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot 64000000E - 01 \\ 2 \cdot 80000000E - 01 \\ 5 \cdot 90000000E - 01 \\ 0 \cdot \\ 5 \cdot 90000000E - 01 \\ 0 \cdot \\ 0 $     | 1.49000000±+00<br>0.<br>1.9000000±+00<br>2.9000000±+00<br>2.56000000±+00<br>0.<br>1.95000000±+00<br>0.<br>1.95000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.00000000E+00<br>5.00000000E+00<br>5.00000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.0000000E+00<br>8.0000000E+00<br>8.0000000E+00<br>8.0000000E+00<br>1.2000000E+01<br>1.4000000E+01<br>1.4000000E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.200000002501<br>1.200000005005400<br>6.000000005400<br>6.000000005400<br>6.000000005400<br>1.000000005400<br>1.000000005400<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.00000005401<br>1.0000005400<br>1.0000005400<br>1.0000005400<br>1.000005400<br>1.000005400<br>1.000005400<br>1.00000500<br>1.00000500<br>1.00000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500<br>1.0000500000000000000000000000000000000                                                                                                                                                                                                                                         | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 2 \cdot 30000000E = 01 \\ 0 \cdot \\ 1 \cdot C4000000E = 01 \\ 2 \cdot 80000000E = 01 \\ 2 \cdot 80000000E = 01 \\ 0 \cdot \\ 2 \cdot 80000000E = 01 \\ 0 \cdot \\ 0 $     | 1.+ + 9000000 ± + 00<br>0.<br>1.32000000 ± + 00<br>2.3000000 ± + 00<br>2.5600000 ± + 00<br>2.1000000 ± + 00<br>2.1000000 ± + 00<br>2.5500000 ± + 00<br>2.5500000 ± + 00<br>2.5500000 ± + 00<br>2.5000000 ± + 00<br>2.5000000 ± + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00000000E+00<br>3.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.<br>3.0000000E+00<br>3.000000E+00<br>3.000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+50000000E+01<br>1+20000000E+01<br>6+00000000E+00<br>6+00000000E+00<br>6+00000000E+00<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+000000000E+01<br>1+000000000E+01<br>1+000000000E+01<br>1+0000000000E+01<br>1+0000000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+0000000000E+01<br>1+00000000000000E+01<br>1+000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} c \cdot 30000000 E = 01 \\ 0 \cdot \\ 1 \cdot C4000000 E = 01 \\ 2 \cdot 80000000 E = 01 \\ 5 \cdot 90000000 E = 01 \\ c \cdot \\ 5 \cdot 40000000 E = 01 \\ c \cdot \\ 5 \cdot 40000000 E = 01 \\ c \cdot \\ 3 \cdot 90000000 E = 01 \\ c \cdot \\ 5 \cdot 6000000 E = 01 \\ c \cdot \\ 5 \cdot 6000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ 5 \cdot 4000000 E = 01 \\ c \cdot \\ c$                                                                                                                                       | 1. 49000000 + 00<br>1. 32000000 + 00<br>2. 3000000 + 00<br>2. 56000000 + 00<br>2. 55000000 + 00<br>2. 5500000   + 00<br>2. 550000000 + 00<br>2. 550000000 + 00<br>2. 55000000 + 00<br>2. 55000000 + 00<br>2. 55000000 + 00<br>2. 550000000 + 00<br>2. 55000000  + 00<br>2. 550000000 + 00<br>2. 5500000000000000000000000000000000000                                                                                                                                                                                                                                | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot 64000000E - 01 \\ 2 \cdot 80000000E - 01 \\ \cdot 5 \cdot 90000000E - 01 \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 9000000E - 01 \\ c \cdot \\ \cdot 9000000E - 01 \\ c \cdot \\ \cdot 9400000E - 01 \\ \cdot \\ \cdot 3 \cdot 9000000E - 01 \\ \cdot \\ \cdot 94000000E - 01 \\ \cdot \\ \cdot 3 \cdot 9000000E - 01 \\ \cdot \\ \cdot 3 \cdot 9000000E - 01 \\ \cdot \\ \cdot 3 \cdot 0 \cdot 0 - 0 \\ - 0 - 0 - 0 \\ \cdot \\ \cdot 3 \cdot 0 - 0 - 0 \\ - 0 - 0 - 0 \\ - 0 - 0 \\ - 0 - 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.49000000±+00<br>0.<br>1.32000000±+00<br>2.3000000±+00<br>2.56000000±+00<br>0.<br>1.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.9500000±+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>3<br>9<br>0<br>3<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.00000000E+00<br>8.00000000E+00<br>8.00000000E+00<br>8.00000000E+00<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01                                                                                                                                                                                                                                                                                                                                                                                                                   | 1+50000000000000000<br>0+000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 2 \cdot 30000000E = 01 \\ 0 \cdot \\ 1 \cdot C4000000E = 01 \\ 2 \cdot 80000000E = 01 \\ 2 \cdot 80000000E = 01 \\ 5 \cdot 90000000E = 01 \\ C \cdot \\ 5 \cdot 40000000E = 01 \\ C \cdot \\ 3 \cdot 90000000E = 01 \\ C \cdot \\ 3 \cdot 90000000E = 01 \\ C \cdot \\ 5 \cdot 6000000E = 01 \\ C \cdot \\ 5 \cdot 6000000E = 01 \\ C \cdot \\ 5 \cdot 9400000E = 01 \\ C \cdot \\ 5 \cdot 9400000E = 01 \\ C \cdot \\ 2 \cdot 9400000E = 01 \\ C \cdot \\ 2 \cdot 000000E = 01 \\ C \cdot \\ $                                                                                                              | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5000000 ± +00<br>2. 4000000 ± +00<br>2. 4500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 4000000 ± +00<br>2. 400000 ± +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00000000E+00<br>3.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.<br>3.0000000E+00<br>3.000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00                                                                                                                                                                                                                                                                                                                                                                   | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} c \cdot 30000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>2. 5600000 ± +00<br>3. 600000 ± +00<br>3. 60000 ± +00<br>3. 600000   ± +00<br>3. 6000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+nn<br>1.0000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot 64000000E - 01 \\ 2 \cdot 80000000E - 01 \\ \cdot \\ 5 \cdot 90000000E - 01 \\ \cdot \\ 5 \cdot 90000000E - 01 \\ 0 \cdot \\ 5 \cdot 4000000E - 01 \\ 0 \cdot $           | 1.49000000±+00<br>0.132000000±+00<br>2.30000000±+00<br>2.56000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.55000000±+00<br>2.5600000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.6000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.5000000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+00<br>2.500000±+0000±+0000±+0000±+0000±+0000±+0000±+0000±+000±+0000±+0000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+000±+00 | 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>3<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+0000000E+01<br>6,0000000E+00<br>6,00000000E+00<br>6,00000000E+00<br>6,00000000E+00<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+00000000E+000000000E+00000000                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 2 \cdot 30000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.+ + 9000000 ± +00<br>0.<br>1.3200000 € +00<br>2.3000000 ± +00<br>2.5000000 ± +00<br>2.5000000 ± +00<br>2.5500000 ± +00<br>2.5500000 ± +00<br>2.5500000 ± +00<br>2.5500000 ± +00<br>2.500000 ± +00<br>2.600000 ± +00<br>2.600000 ± +00<br>2.1800000 ± +00<br>2.400000 0 ± +00<br>2.4000000  ± +00<br>2.40000000 ± +00<br>2.40000000000000 ± +00<br>2.4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00                                                                                                                                                                                                                                                                                                                                                                                         | 3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.00000000E+00                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000E+00<br>4.00000000E+00<br>8.00000000E+00<br>8.00000000E+00<br>8.00000000E+01<br>1.20000000E+01<br>1.20000000E+01<br>1.20000000E+01<br>1.20000000E+01<br>1.20000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.00000000E+01<br>4.000000000000000000000000000000000000 | 1.2000000E+01<br>6.0000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>1.80000000E+00<br>1.80000000E+01<br>1.80000000E+01<br>1.80000000E+01<br>1.80000000E+01<br>1.80000000E+01<br>1.80000000E+01<br>1.80000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>1.8000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.2000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.20000000E+01<br>3.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot C4000000E - 01 \\ 2 \cdot 80000000E - 01 \\ \cdot 5 \cdot 90000000E - 01 \\ \cdot 5 \cdot 90000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 40000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 6000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 6000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 6000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 6000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9400000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9400000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ c \cdot \\ \cdot \\ \cdot 6 \cdot 000000E - 01 \\ c \cdot \\ \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ c \cdot \\ \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ c \cdot \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. + 9000000 ± +00<br>0.<br>1. 3200000 € +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5600000  ± +00<br>3. 560000000 ± +00<br>3. 560000000 ± +00<br>3. 56000000 ± +00<br>3. 56000000 ± +00<br>3. 56000000 ± +00<br>3. 56000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                        | 2.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>5.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.0000000000000000000000000000000000                                                                                                                                                                                                          | 3 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.20000n0E+01<br>4.20000n0E+00<br>6.00000n0E+00<br>6.00000n0E+00<br>6.00000n0E+00<br>1.20000n0E+00<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.20000n0E+01<br>1.200000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.200000E+01<br>1.200000E+01<br>1.200000E+01<br>1.200000E+01<br>1.200000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.2000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.20000E+01<br>1.200000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.20000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.20000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.2000000E+01<br>1.20000000E+01<br>1.20000000E+00<br>1.20000000E+00<br>1.20000000E+00<br>1.20000000E+0000000E+00<br>1.20000000E+00000000000000000000000000000 | 1.000000012.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.00000000E.4n0<br>1.0000000E.4n0<br>1.0000000E.4n0<br>1.0000000E.4n0<br>1.0000000E.4n0<br>1.0000000E.4n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot 64000000E - 01 \\ 2 \cdot 80000000E - 01 \\ \cdot 5 \cdot 0000000E - 01 \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 40000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 0 \cdot \\ 0 \cdot 0 \cdot \\ 0 \cdot 0 - \\ 0 - \\ 0 \cdot 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 - \\ 0 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>0.<br>1. 9500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 600000 ± +00<br>2. 600000 ± +00<br>2. 100000 ± +00<br>2. 100000 ± +00<br>2. 4000000 ± +00<br>2. 4000000 ± +00<br>2. 100000  ± +00<br>2. 1000000 ± +00<br>2. 1000000 ± +00<br>2. 1000000 ± +00<br>2. 100000 ± +00<br>2. 100000 ± +00<br>2. 100000 ± +00<br>2. 100000 ± +00<br>2. 1000000 ± +00<br>2. 100000 ± +00<br>2. 100000 ± +00<br>2. 1000000 ± +00<br>2. 100000 ± +00<br>2. 1000000  ± +00<br>2. 1000000 ± +00<br>2. 10000000 ± +00<br>2. 10000000 ± +00<br>2. 10000000 ± +00<br>2. 1000000 ± +00<br>2. 1000000 ± +00<br>2. 1000000 ± +00<br>2. 1000000 ± +00<br>2. 10000000 ± +00<br>2. 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.00000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>3.0000000E+00<br>4.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>4.0000000000000000000000000000000000                                                                                                                                                                                                 | 3.0000000E.00   3.0000000E.00   3.0000000E.00   3.0000000E.00   3.0000000E.00   3.0000000E.00   3.0000000E.00   3.0000000E.00   6.0000000E.00   6.000000E.00   6.000000E.00 | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 2 \cdot 30000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>3. 5500000 ± +00<br>3. 5500000 ± +00<br>3. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5600000 ± +00<br>2. 5600000 ± +00<br>2. 5600000 ± +00<br>3. 4600000  ± +00<br>3. 4600000 ± +00<br>3. 46000000 ± +00<br>3. 46000000 ± +00<br>3. 46000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>4.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                       | 3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>6.00000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.0000000E+00<br>6.00000000E+00<br>6.0000000E+00<br>6.00000000E+00<br>6.0000000000E+00<br>6.00000000E+00<br>6.00000000000000000000<br>6.0000000000                   | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>4.00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1+20000000E+01<br>4-20000000E+01<br>6-00000000E+00<br>6-000000000E+00<br>6-000000000E+00<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+8000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+800000000E+01<br>1+8000000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+80000000E+01<br>1+800000000E+01<br>1+800000000E+000000E+01<br>1+800000000E+0000000E+01<br>1+800000000E+0000000E+000000000000000000                                                                                            | 1.0000000E+nn<br>1.0000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.00000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>1.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn<br>2.0000000E+nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 2 \cdot 30000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 5500000 ± +00<br>2. 500000 ± +00<br>2. 400000 ± +00<br>3. 400000 ± ± 00<br>3. 4000000 00 ± ± 00<br>3. 4000000 ± ± 00<br>3. 40000000 0000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.00000000E+00<br>3.0000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000000000000E+00<br>3.0000000000000000000000000000000000 | 3.0000000E+00   3.0000000E+00   3.0000000E+00   3.0000000E+00   3.0000000E+00   3.0000000E+00   3.0000000E+00   6.0000000E+00   7.0000000E+00   3.000000E+00   3.000000E+00   3.000000E+00   3.000000E+00   3.000000E+00                                                                                              | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+0000000E+01<br>1+20000000E+01<br>6+00000000E+00<br>6+00000000E+00<br>6+00000000E+00<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+0000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+01<br>1+00000000E+00000000E+01<br>1+000000000E+00000000000000000000000000                                                                              | 1.00000015.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000005.4n0<br>1.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 2 \cdot 30000000E - 01 \\ 0 \cdot \\ 1 \cdot 64000000E - 01 \\ 2 \cdot 80000000E - 01 \\ \cdot 5 \cdot 90000000E - 01 \\ \cdot 5 \cdot 9000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 4000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 9400000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 9400000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 9000000E - 01 \\ 0 \cdot \\ \cdot 5 \cdot 3000000E - 01 \\ 0 \cdot \\$                                                                                                             | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>2. 5600000 ± +00<br>2. 5000000 ± +00<br>2. 5000000 ± +00<br>2. 5000000 ± +00<br>2. 5000000 ± +00<br>2. 4000000 ± +00<br>2. 4000000 ± +00<br>2. 4000000 ± +00<br>2. 5000000 ± +00<br>3. 50000000 ± +00<br>3. 50000000 ± +00<br>3. 50000000 ± +00<br>3. 50000000 ± +00<br>3. 5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                      | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.00000000E+00<br>3.0000000E+00<br>3.0000000000000000000000000000000000                | 3   000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 2 \cdot 30000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. + 9000000 ± +00<br>0.<br>1. 32000000 ± +00<br>2. 3000000 ± +00<br>2. 5600000 ± +00<br>2. 5500000 ± +00<br>2. 500000 ± +00<br>2. 500000 ± +00<br>2. 600000 ± +00<br>2. 100000 ± +00<br>2. 400000 ± ±00<br>2. 400000 ± ±00<br>3. 4000000  ± ±00<br>3. 4000000 ± ±00<br>3. 40000000 ± ±00<br>3. 4000000 ± ±00<br>3. 4000000 ± ±00<br>3. 4000000000000000000000000000000000000                                                                                                                                                                                                                                                         | 2.00000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>5.0000000E+00<br>5.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>4.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.0000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.00000000E+00<br>3.0000000000000000000000000000000000                                                               | 3   000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+0000000E+01<br>6,0000000E+01<br>6,0000000E+00<br>6,00000000E+00<br>6,00000000E+00<br>1+00000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>1+0000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-2000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-200000000000E+01<br>3-200000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-200000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-200000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-2000000000E+01<br>3-200000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-200000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-20000000E+01<br>3-200000000E+01<br>3-2000000000000000000000000000000000000                                                                                                                                                                                                                                         | 1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.00000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>1.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.00000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.0000000E+n0<br>2.00000000E+n0<br>2.00000000E+n0<br>2.000000000000000E+n0<br>2.00000000000000000000000000000000000 |

287

· · · ·

9,90000000E-01 3.0000000E+00 3.0000000E+00 6.0000000E+00 1.40000000E+01 3.40000000E+01 2.00000000E+00

| VARIAE | ĴLΕ | MEAN     | STANDARD DEVIATION |
|--------|-----|----------|--------------------|
| LRSVSV | 1   | .37028   | 29609              |
| LCP    | 2   | 1.66758  | 1,14127            |
| D1     | 3   | 2,76842  | 1.04630            |
| D2     | 4   | 3,25263  | 2,17,110           |
| 03     | 5   | 4.75789  | 1.96988            |
| #T     | 6   | 14,58947 | 10.05463           |
| NXL    | 7   | i.23158  | .42408             |
| ARCTAN | 8   | .33184   | 25355              |
| CBLCP  | 9   | 10,18614 | 8.66436            |
| SGLCP  | 10  | 4.06961  | 3.09206            |

| CCVAR IANCI | MATRIX |
|-------------|--------|
|-------------|--------|

| NUMBER | 1    | 2     | 3     | 4     | 5      | 6       | 7     | 8    | 9      | 19     |
|--------|------|-------|-------|-------|--------|---------|-------|------|--------|--------|
| 1      | .088 | ,313  | .022  | .121  | .175   | •177    | .004  | .075 | 2,421  | .873   |
| 2      |      | 1.303 | .061  | .321  | .415   | 065     | 020   | .275 | 9,132  | 3.436  |
| 3      |      |       | 1.095 | .729  | 1.028  | 5.542   | .075  | .019 | .945   | -281   |
| 4      |      |       |       | 4.723 | 1.977  | 4.764   | .069  | .099 | 3.253  | 1.070  |
| 5      |      |       |       |       | 15,760 | 23.974  | .674  | .136 | 6.154  | 1.796  |
| 6      |      |       |       |       |        | 101.096 | 3.649 | •112 | 7.291  | 1.509  |
| 7      |      |       |       |       |        |         | .180  | .001 | .049   | 013    |
| 8      |      |       |       |       |        |         |       | .064 | 2.071  | 756    |
| 9      |      |       |       |       |        |         |       |      | 75.071 | 26,421 |
| 10     |      |       |       |       |        |         |       |      |        | 9.561  |

# CORRELATION MATRIX

| VARIABLE<br>NUMBER                              | 1     | Z             | 3                     | 4                             | 5                                     | 6                                            | 7                                                     | 8                                                             | 9                                                                     | 19                                                                           |
|-------------------------------------------------|-------|---------------|-----------------------|-------------------------------|---------------------------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 1.000 | .926<br>1.000 | .072<br>.051<br>1.000 | .187<br>.129<br>.321<br>1.000 | .149<br>.092<br>.248<br>.229<br>1.000 | .059<br>006<br>.527<br>.218<br>.601<br>1.000 | .028<br>-042<br>.170<br>.074<br>.400<br>.856<br>].000 | .996<br>.950<br>.071<br>.180<br>.137<br>.044<br>.011<br>1.000 | .944<br>.923<br>.104<br>.173<br>.179<br>.084<br>.013<br>.943<br>1.000 | .953<br>.974<br>.087<br>.159<br>.146<br>.049<br>010<br>.964<br>.985<br>1.000 |
| SUE PROBLEM                                     | CARD  |               |                       |                               |                                       |                                              |                                                       |                                                               |                                                                       |                                                                              |

UBFRC 8 -0 -0 -0 -0 VES YES YES

CEPE DENT VARIABLE 8 WAXIMUM NUMBER OF STEPS 20 F-LEVEL FOR INCLUSION F-LEVEL FOR DELETION • 210000 .005000 TOLERANCE LEVEL -001000 CONTROL-DELETE CARUS ONCEL1\*\*\*\*\*\*\*\* STEP NUMBER 1 VARIAGLE ENTERED 10 MULTIPLE R .9638 STD. ERROF FOR RESIDUALS .0690 ANALYSIS OF VARIANCE CF SUM OF SQUARES MEAN SQUARE F RATIO REGRESSION 1 5.613 5,613 1214,618 RESIDUAL 93 .430 .005 ٠ VANIABLES IN EQUATION VARIABLES NOT IN EQUATION . VARIANLE COEFFICIENT STD. ERROR F TO REMOVE . VARIABLE PARTIAL CORR. TOLEHANCE F TO FNTER .01021 ) (CONSTANT SULCP 10 .07903 ·00227 1214.6179 LRSVSV .96203 +0909 1142.9149 1 .19048 LCP Ż .0520 3.4638 .1994 -.04650 .9924 01 3 .9747 4 .10066 +9417 02 01 5 -.01351 .9786 .0168 WT. 6 -.01131 .9976 .0118 .9999 .5737 NXL 7 .07872 ٠ -.17712 CALCP .0274 2.9796 9 STEP NUMBER 2 VARIABLE ENTERED 2 MULTIPLE R .9651 STD. ERROF FOR RESIDUALS +0671 ANALYSIS OF VARIANCE MEAN SQUARE F RATIO CF SUM OF SQUARES REGRESSION 2 5+629 2.015 625.130 SŠ RESIDUAL +414 .005 ٠ VARIABLES IN EQUATION VARIABLES NOT IN EQUATION ٠ VARIABLE COEFFICIENT STD. ERROR F TO REMOVE . VARIABLE PARTIAL CORR. TOLERANCE F TO HATER

.

.

٠

SL8-PROBLM

. . . .

291

•

.

.

|           |          |         |   |        | :      |        | .00005 ) | (CONSTANT |
|-----------|----------|---------|---|--------|--------|--------|----------|-----------|
| 3412.3257 | .0908    | . 98693 | 1 | LRSVSV | 4638 . | .02659 | 04949    | LCP 2     |
| .0720     | .9705    | 01876   | 3 | D1     | 9363   | .00982 | .06125   | SQLCP 10  |
| 1.4564    | .9620    | .12551  | 4 | 02     | •      |        |          |           |
| .0863     | .9288    | .03079  | 5 | 03     | •      |        |          |           |
| .1n82     | . 94 3 9 | .03446  | 6 | ¥T.    | •      |        |          |           |
| 1.0898    | .9798    | .10878  | 7 | NXL    | •      |        |          |           |
| .1132     | .0015    | .03525  | 9 | CBLCP  | •      |        |          |           |

· · · · ·

| VARIABLE ENTER | ED 4        |                    |              |           |               |             |            |  |
|----------------|-------------|--------------------|--------------|-----------|---------------|-------------|------------|--|
| MULTIPLE R     | •9          | 657                |              |           |               |             |            |  |
| STD. ERROF FOR | RESIDUALS   | .0669              |              |           |               |             |            |  |
| ANALYSIS OF VA | RIANCE      |                    |              |           |               |             |            |  |
|                | CF          | SUM OF SQUAR       | ES MEAN SQUA | RE FRATIO |               |             |            |  |
| REGRES         | SICN 3      | 5.630              | 1,879        | 419,306   |               |             |            |  |
| RESIDU         | AL 91       | • <del>4</del> U 8 | .004         | -         |               |             |            |  |
|                |             |                    |              |           |               |             |            |  |
|                | VARIABLES 1 | IN EQUATION        | •            |           | VARIABLES NOT | IN EQUATION |            |  |
| VARIABLE       | COEFFICIENT | STD. ERROR         | F TO REMOVE  | VARIABLE  | PARTIAL CORR. | TOLERANCE   | F TO ENTER |  |
| (CONSTANT      | - 01163     | ,                  | •            |           |               |             |            |  |
| LCP 2          | .05317      | .02670             | 3 9453       | I REVEN 1 | 98677         | .0865       | 3333.0556  |  |
| 02 4           | .00391      | :00324             | 1.4564       | 01 3      | 09966         | .8830       | . 3215     |  |
| SQLCP 10       | .05949      | .00990             | 36.1131      | 03 5      | 00698         | .8949       | • 0 0 4 4  |  |
|                |             |                    | •            | WT 6      | .01048        | .9086       | .0099      |  |
|                |             |                    | •            | NXL 7     | .10203        | .9761       | •9467      |  |
|                |             |                    |              |           |               |             |            |  |

| STEP NU-             | BER<br>Enti  | 4<br>Ereq | 7             |               |      |                   |         |       |   |               |               |            |
|----------------------|--------------|-----------|---------------|---------------|------|-------------------|---------|-------|---|---------------|---------------|------------|
| MULTIPLE<br>STD+ ERE | : A<br>107 F | OR HESI   | DUALS         | 9660<br>•0670 |      |                   |         |       |   |               |               |            |
| ANALYSIS             | CF           | VARIANC   | E             |               |      |                   |         |       |   |               |               |            |
|                      | REGRI        | ESSION    | UF<br>4<br>90 | SUM OF SQU    | ARES | MEAN SQL<br>1.410 | IARE 31 | F RAT |   |               |               |            |
|                      |              | <br>VA    | HTARLES       |               |      | •                 |         |       |   | VADIABLES     | THE FOULATION |            |
|                      |              |           | NINGER .      | TH EQUALION   |      | •                 |         |       |   | ANKINGERS VOI | TH EGOMITON   |            |
| VARIAH               | ιE           | CUE       | FFICIENT      | STD. ERROR    | FTO  | REMOVE            | VAF     | IVBLE | 5 | PARTIAL CORR. | TULERANCE     | F TU ENTER |
| (CONSI               | ANT          |           | 03165         | <i>)</i>      |      | •                 |         |       |   |               |               |            |
| LCP                  | ĉ            |           | .05669        | .02695        | , 4  | 4.4238 .          | LRSV    | sv 1  | L | .98671        | .0883         | 3282.1747  |
| 02                   | 4            |           | .00371        | .00325        | i 1  | 1.3088            |         | D1 3  | 3 | 07531         | .8651         | .5177      |
| NXL.                 | 7            |           | .01604        | .01548        |      | 9467              |         | 03 5  | 5 | 03504         | .7630         | .1194      |

| SQLCP 10                       | .05827                | .00998                          | 34.0788 .                   | WT 6<br>CRLCP 9       | 153/9<br>.04256 | .2331<br>.0015 | 2.1559<br>+1615 |
|--------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-----------------|----------------|-----------------|
|                                |                       |                                 |                             |                       |                 |                |                 |
| STEP NUMBEH<br>Variable Entere | 5<br>EU 6             |                                 |                             |                       |                 |                |                 |
| MULTIPLE R<br>STD. ERHOR FOR   | RESIDUALS             | 6 <b>59</b><br>•0665            |                             |                       |                 |                |                 |
| ANALYSIS CF VA                 | RIANCE                |                                 |                             |                       |                 |                |                 |
| REGRES                         | CF<br>SIGN 5<br>AL 89 | SUM OF SQUARES<br>5.649<br>.394 | HFAN SQUAF<br>1.130<br>.004 | E F RATIO<br>255,289  |                 |                |                 |
|                                | VARTARIES T           | N FOUATION                      | •                           |                       | VARIARIES NOT   | IN FOULTION    |                 |
|                                |                       |                                 | •                           |                       | ANGINGED MOI    | THE EGONITON   |                 |
| VARIANLE                       | CUEFFICIENT           | STD. ERROR F                    | TO RENOVE .                 | VARIABLE              | PARTIAL CORR.   | TULERANCE      | F TO FNTER      |
| (CONSTANT                      |                       | ,                               | •                           |                       |                 |                |                 |
| LCP 2                          |                       | , ,02731                        | 3.1938                      | LASVSV 1              | .98650          | .0857          | 3192+5650       |
| 67 4                           | .00505                | .00335                          | 2.2730                      | D1 3                  | .05140          | .4177          | •2331           |
| WT Ć                           | 00208                 | +00141                          | 2.1559 .                    | 03 5                  | .04785          | •5761          | .2019           |
| NXL /                          | .05697                | +03233                          | 3.1046 .                    | CBLCP 9               | .03118          | .0015          | •0A57           |
| _                              | ••••                  |                                 |                             |                       |                 |                |                 |
| VARIABLE ENTER                 | 6<br>EU 3             |                                 |                             |                       |                 |                |                 |
| MULTIPLE R<br>Sto. Ernor for   | RESIDUALS             | •0668                           |                             |                       |                 |                |                 |
| ANALYSTS CF VAL                | RIANCE                |                                 |                             |                       |                 |                |                 |
| REGRES                         | CF<br>SION 6<br>AL 88 | SUM OF SQUARES<br>5.650<br>.393 | MEAN SQUAR<br>.942<br>.004  | RE F HATIO<br>210,946 |                 |                |                 |
|                                | VAHIABLES I           | N EQUATION                      | •                           |                       | VARIABLES NOT   | IN EQUATION    |                 |
| VARIANLE                       | COFFFICIENT           | STD. FRROR F                    | TO REMOVE                   | VARIANLE              | PARTIAL CORR.   | TOLFRANCE      | F TO ENTER      |
| · · · · · • • • • • • • • • •  |                       | , ye wannen f                   | en angenetike k             | · ····                | CANTER CALLER   |                |                 |
| CONSTANT                       | 07307                 | 1                               | •                           |                       |                 |                |                 |
| LCP 2                          | .04801                | ·02748                          | 3.0525 .                    | LASVSV 1              | .98662          | .0856          | 3197.0087       |
| 01 3                           | .00492                | .01019                          | .2331 .                     | D3 5                  | .07365          | .4894          | .4745           |
| 02 4                           | 00482                 | .00340                          | 2.0048                      | CALCA 9               | .03711          | .0015          | .1200           |
| #1 C<br>NXI 7                  | 002/8                 | +0200+                          | 2.8119                      |                       |                 |                |                 |
| SQLCP 10                       | .06103                | +01020                          | 36.5246                     |                       |                 |                |                 |

STEP NUMBER 7

293

· · · ·

VARIABLE ENTERED 5 MULTIPLE R .9671 STD. ERHOR FOR RESIDUALS .0670 ANALYSIS OF VARIANCE CF SUM OF SQUARES MEAN SQUARE F RATIO REGRESSION 7 5.653 .808 179.799 RESIDUAL 87 .391 .004 VARIABLES IN EQUATION VARIABLES NOT IN EQUATION . VARIANLE COEFFICIENT STD. ERROR F TO REMOVE . VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER (CONSTANT -.08955 ) .04922 LCP 2 LRSVSV 1 .02762 3.1756 .98661 +0853 3147.2078 01 3 .00788 .5n54 +01109 CALCP 9 .03998 .0015 •1377 .00455 02 4 +00343 1.7548 .00171 03 5 +00249 .4745 ₩T 6 -.00382 +00254 2.2602 NKL 7 .08282 +04586 3.2613 . SOLCP 10 .06100 .01027 35.2851 . STEP NUMBER 14 VARIABLE ENTERED Q MULTIPLE R .9672 STD. ERROF FOR RESIDUALS +0674 ANALYSIS CF VARIANCE CF SUM OF SQUARES MEAN SQUARE F RATIO REGRESSION 8 5.653 .707 155.782 RESIDUAL 86 .390 .005 VARIABLES IN EQUATION VARIABLES NOT IN EQUATION VARIANLE COEFFICIENT STD. ERROR F TO REMOVE . VARIABLE PARTIAL CORR. TOLERANCE F TO FNTER -.09136 ) (CONSTANT LCP 2 .09108 +11616 .6147 LRSVSV 1 .99154 .0836 4958.9820 01 3 .01837 .01122 .5559 02 .06458 - 4 +00345 1.7567 5 03 .00175 +00250 .4882 ie T 6 -.00386 .00255 2.2812 .08325 NXI 7 .04610 3.2610 CBLCP 9 .00778 .02096 .1377 SOLCP 10 .02445 .09904 .0609 .

4

F-LEVEL OR TOLERANCE INSUFFICIENT FOR FURTHER COMPUTATION

. .

,

294

.

4

.

.

.

### SUMMARY TABLE

| STEP VARIABLE |                 | MULTIPLE |       | INCREASE | F VALUE TU      | NUMBER OF INDEPENDENT |
|---------------|-----------------|----------|-------|----------|-----------------|-----------------------|
| NUMBER        | ENTERED REPOVED | R        | RSQ   | IN RSQ   | ENTEH OR REMOVE | VARIABLES INCLUDED    |
| 1             | SELCP 10        | .9638    | ,9289 | .9289    | 1214.6179       | 1                     |
| 2             | LCP 2           | .9651    | 9315  | .0026    | 3,4638          | 2                     |
| 3             | D2 4            | +9657    | .9325 | .0011    | 1.4564          | 3                     |
| 4             | NXL 7           | •9660    | .9332 | .0007    | .9467           | 4                     |
| 5             | WT 6            | •9669    | .9348 | .0016    | 2.1559          | 5                     |
| 6             | 01 3            | •9669    | .9350 | •0002    | .2331           | 6                     |
| 7             | 03 5            | •9671    | .9353 | .0004    | .4745           | 7                     |
| 8             | COLCP 9         | •9672    | ,9354 | .0001    | .1377           | 8                     |

×

### LIST OF Y-VALUES. Y-ESTIMATES. AND RESIDUALS

| ÇASE | Y-VALUE              | Y-ESTIMATE       | RESTOUAL        |   |
|------|----------------------|------------------|-----------------|---|
| 1    | <b>C</b> .           | -9.22772784E-03  | 9.22772784E-03  |   |
| 2    | 2.91456/94E-01       | 3.3292921+£+01   | -4.14724196E+02 |   |
| 3    | 7.01584135E-01       | 6.63127003E-01   | 3.84571317F-32  |   |
| 4    | U .                  | 6.13497292E-03   | -6,134872925-03 |   |
| 5    | 5.513759656-01       | 5,91236458E-01   | -3.98604930E-02 |   |
| 6    | <i>L</i> .           | 4.49928191E-03   | -4.49928191E-03 |   |
|      | 5.33034110E-01       | 5.28349612E-01   | 4.68449846E-03  |   |
| 8    | 0.                   | -2.33655304E-02  | 2.33655304E-02  |   |
| . 9  | 5.33034410E-01       | 6.36033367E-01   | -1.02999258E~01 |   |
| 10   | 0.                   | -3.8462874dE-02  | 3.846287485-02  |   |
| 11   | 3.366740196-01       | 3.0369406/E-01   | 3.298075225-02  |   |
| 12   | 5.46419200E=01       | 5.54607675E-01   | -1,41881752E-02 |   |
| 1.1  |                      | 2.70099722E-02   | -2.70008722E-02 |   |
| 14   | 3.4/1/0026E=01       | 5.84/624656-01   | 1.24141928E-02  |   |
| 15   | 1.55/02/55E-01       | /.08085558E-01   | 5.167719736-02  |   |
| 10   |                      | 4.209A2166E-02   | -4.20982166F-02 |   |
| 11   | 3.09/027435-01       | 3.39428288E-01   | -4.97253438E-02 |   |
| 18   | C                    | 7.91064040E-03   | -7.91064046F-03 |   |
| 14   | 3.455533816-01       | 2.740229296-01   | 7.15326512F-02  |   |
| 24   | 4./1610060E-01       | 3.50067582E-01   | 1.21547985F-01  |   |
| 21   | 3.9/1/0058E=01       | 3./9005580E-01   | 2.181/10/2F-01  | • |
| 22   | 1 733/55/61 03       | 6.27504945E-03   | -6.2/504945F-03 |   |
| 23   | 1,132430601-01       | 1.004783475-01   | -1 3/32/302E-02 |   |
| 29   | 2.0202.5315-01       | 3.484319916-01   | 4.00652397F=02  |   |
| 20   | V.<br>2 44978m/3c al | -2.102840401-03  | 2.10284048F-03  |   |
| 20   | 3 450072315 01       | 3.030284806-01   | -1.18049B1/E-01 |   |
| 28   | 4 14505H755 01       | 3.009909020-01   | 2,100248/16-03  |   |
| 20   | 4.143.9007522.01     | -3 14404 8855 04 | 5./5240248E-03  |   |
| 27   | 4 31138/A1E 01       | -c.14480000E+U4  | 2,144008051-04  |   |
| 30   | 5 330341105.01       | 4.202559/0E=01   | 1.0082/7000-02  |   |
| 32   | 5.330341106-01       | 5.23633643E=UI   | A 34450152E=03  |   |
| 32   | 6 345777576          | 1.130410332-02   | -1-13041033F-02 |   |
| 33   | 0.30311.315=01       | 0.000013502-01   | -3.010300082-02 |   |
| 36   | 2-41450/945-01       | A 33743640E-01   | -1.327118236-02 |   |
| 36   | 4.145.06875E-01      | 5 29772064F-01   | 153651945-01    |   |
| 37   | 1                    | =2 9304097=E=03  | 2 930409745-02  |   |
| 36   | 3.97627992F_01       | 5 0944757dF-01   | 1 110105365-01  |   |
| 10   | L.                   | 6.20362122E-07   | -4 203621225-03 |   |
| 40   | 1-68390157F=01       | 1.8690490dF=01   | -1 #51681126-03 |   |
| 41   | 3.657658566-01       | 2.7/3159105-01   | 9 344994615-03  |   |
| 42   | * 311367616-01       | 5 449552475-01   | 1 138165065-01  |   |
| 43   | 4-85013570F-01       | 6.154245HLF=01   | -1 304110115-01 |   |
| 44   | 5.798821326-01       | 6.195067228-01   | -3 963458986-03 |   |
| 45   | 9.24023053E-01       | 6.23606772E=01   | A 16280936F=04  |   |
| 46   | 9.                   | -9.95128920E-03  | 9 951289205-03  |   |
| 47   | 2.98779988E-01       | 3.43607574E=01   | -A A8275855E-02 |   |
| 48   | 5.53549764E-01       | 5.99269671E-01   | -4.5/199067F=02 |   |
| 49   | 0.74740742E=01       | 9.24222379E-01   | 4.651856926-02  |   |
| 50   | U.                   | 6.51639984E=03   | -6-516389805-03 |   |
| 51   | 3.64843489E-01       | 3-23846462E-01   | 4-10470274F=02  |   |
| 52   | 4.850135705-01       | 5.01369240E-01   | -1.63556701F-02 |   |
| 53   | 5.798921326-01       | 5.52820609E-01   | 2.70615233F-02  |   |
| 54   | 6.24023U53L-01       | 5.68131550E-01   | 5.589149675-02  |   |
| 55   | C •                  | -7.92511851E-04  | 7.925118518-04  |   |
| 56   | 4.060940586-01       | 4.32631777L-01   | -2.65337203F-02 |   |
| 57   | 5.10488322E-01       | 4.45835567E-01   | 6.4-527546F-02  |   |
| 58   | 6,37070329E-01       | 4.60116450E-01   | 1.70953880F-01  | ٠ |
|      |                      | • ••• ••         |                 |   |

| 59         | 7.044940646-01 | +.94060344F-01     | 2.104337206-01 + |
|------------|----------------|--------------------|------------------|
| 60         | 7.70170914E-01 | 7.02444345E-01     | 6.77265686F-02   |
| 61         | v.             | -2.23079643E-02    | 2,23079643F-02   |
| 62         | 3.44670029E-01 | 3.98162493E-01     | -5.34924632F-02  |
| 63         | 0              | -6.15305391F-03    | 6.15305391F-03   |
| 64         | 2.702249435-01 | 3-04941892E-01     | -9 47172491F-02  |
| 65         | 2.8594315dF-01 | 3 95 14 87801 - 01 | -1 09405628E-01  |
| 66         | i.             | -3.76705651F=02    | 3.767056516-03   |
| 67         | 2.26068388F=01 | 1.78033258F-01     | A.80351345F=02   |
| 68         | 0.             | 7-57305584F=03     | -7.57395584E+03  |
| 69         | 1.03627460E-01 | 1.88277303E=01     | -8.46498430F=02  |
| 7.0        | 2.73008/035-01 | 3.22215124E=01     | -A 92064176E=02  |
| 71         | 4-63647609F-01 | 4-40998246E=01     | 2.264936275=02   |
| 72         | 5-33034110F-01 | 5.31424280F-01     | 1 609824525-03   |
| 73         |                | =1.2726529 (F=03   | 1 272052935=03   |
| 74         | 4-951332636-01 | 5.759308955-01     | -8 070763155403  |
| 75         | 7-044940645-01 | 6.36901612F=01     | 6 75924520E=02   |
| 7.6        | 0.             | -1 100805535-03    | 1 100885535-02   |
| 77         | 2 914567045 01 | 2 903031726 01     | 1 043433345 03   |
| 78         | 6 139429786 01 | 5 35305364F-01     | 4 840741425-02   |
| 79         | 0              | A 35374552F-03     | A 353745525-03   |
| 80         | 5 104983335 01 | 5 345349575 A      |                  |
| 80<br>81   | 6 137365615 01 | 5 994557705-01     | =1,403203491=02  |
| 83         | 5 350060555 01 | 5 4314533302=01    | 2.328122036=02   |
| 9 <b>6</b> | 5 735-81395 03 | 5.450/00135-01     | -7.109315596-03  |
| 0 <b>)</b> | 6 30677767C A  | 5.059689122-01     | 1,58921020E=03   |
| 04         | 3 543440595 41 | 0.034634036-01     | 2.5113/9421-02   |
| 03         | 2.343500376-01 | 3.4051000/2-01     | -9.21426289E+02  |
| 00         | V.             | 1.424665035-05     | -1.43400503E-05  |
| 87         | 4.3113C/41E=01 | 4.14897336E=01     | 1.02414044E-02   |
| 8e         | 3*3303#110E=01 | 4.805055882-01     | 4.05285224E-02   |
| 89         |                | -2.49685110E-03    | 2.49685116E-03   |
| 90         | 2.05575001E-01 | 2.98915176E-01     | -3.33301/50E-02  |
| AT 1       | 4.8464//75E-01 | 5.90573699E=01     | -1.008/5924E-01  |
| 76         |                | 2.5222424/E=02     | -2.52224247E-02  |
| ¥3         | 5.142HC541E+01 | 4.65217178E-01     | 4.90693628E-02   |
| 94         | 0.501/0/18E-01 | 5.49072755E-01     | 1.07105963E-01   |
| 95         | 7.803/3080E-01 | 7.20459282E=01     | 5.19137980E-02   |
|            |                |                    |                  |

FINISH CARD ENCOUNTERED PRCGRAM TERMINATED

< **\*** 

APPENDIX 4.7

.

COMPUTER PROGRAM AND CALCULATED VALUES OF ROUGHNESS INDEX AND PRESENT SERVICEABILITY INDEX

|   | PROGRA    | M PSI (INPUT, DUTPUT, TAPES=INPUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRK THICKNESSES                          | AXLE NO | ROUGH | ROUGH RUT   | CALC | SECTION | HONTH      |
|---|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-------|-------------|------|---------|------------|
| e | E FCRYAT  | OU (1H1+ 5K+ 36HCRK THICKNESSES AKLE NO, ROUGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INDEX AL E 35                            | WI AALC | 140-1 | TUDAL DEDIN | P21  |         |            |
|   | *         | 33 RUUGH RUT CALC SECTION MONTH /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         |       |             |      |         |            |
|   | •         | 4X1 +3HINDEX AC U SB WT AXLE IND-I IND-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 4.00 3.00 4.00                         | 16.0 1  | .30   | .28 0.00    | 4,50 | 627     | P          |
|   | • •       | 11F DEPTH PSI // )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47 4.00 3.00 4.00                        | 18.0 1  | .30   | .56 .12     | 3.04 | 627     | FEB        |
| - | ευ        | NATINUE<br>15-28-5 (1. 60 NT DTH HE IN THE STATES AND ALL MEET AND TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 4.00 3.00 4.00                        | 18.0 1  | .30   | •67 •13     | 3.64 | 627     | MAR        |
|   | 10 5.0VAT | STATE ALF ADE DIE DIEFF BIE WALS SVAR RULE NSELLEMONIE<br>1. (BEELLE THE SEO D. 200 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 16.0 1  | .30   | • 97 • 13   | 3.00 | 621     | Арн        |
| - | 16        | (Fris) 99. An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 10.0 1  | 30    | -29 0.00    | 3 3/ | 623     | 5<br>5 5 4 |
| 4 | n Či      | INTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160 5 00 6 00 1 00                       | 18.0 1  | 30    |             | 3.04 | 423 .   | MAD        |
|   | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 409 3.00 6.00 8.00                       | 18.0 1  | .30   | 1.20 .35    | 2.37 | 623     | 409        |
| • | C 1       | CRACKING INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600 3.00 6.00 8.00                       | 18.0 1  | 30    | 1.38 .36    | 1.97 | 623     | MAY        |
| # | 00        | THICKNESS OF ASPHALT CONCRFTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 3.00 0.00 8.00                         | 18.0 1  | .60   | 57 0.00     | 3.95 | 607     | 8          |
| • | OT.       | THICKNESS OF BUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 3.00 0.00 8.00                        | 18.0 1  | .60   | .89 .15     | 3.22 | 607     | DEC        |
| * | DIH       | THICKNESS OF SUBBASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270 3.00 0.00 8.00                       | 16.0 1  | .60   | 1.16 .16    | 5.61 | 607     | FE8        |
| • | WT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350 3.00 0.00 8.00                       | 18.0 1  | .60   | 1.24 .16    | 2.44 | 607     | MAR        |
| 1 | NAL       | NUMBER OF AALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 670 3,00 0.00 8.00                       | 18.0 1  | .60   | 1.48 .65    | 1.36 | 607     | APR        |
|   |           | 1 - SINGLE AALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 18:0 1  | .50   | .50 0.00    | 4,07 | 625     | 8          |
|   | SV.       | PUNCT PALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | 1041    | .50   | 1.00 .31    | 2.00 | 625     | APH-1      |
| • |           | SECTION JUST AFTER CONSTRUCTION OF AT THE REGIMENTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 790 4 00 5.0012.00                       | 10.0 1  | .50   | 1.64 .32    | 2.90 | 060     | MAT-1      |
|   |           | OF THE ANALYSIS PERIOD & ROUGH INDET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 940 4.00 6.0012.00                       | 1.0.0 1 | .50   | 1.74 .34    | 1.25 | 425     | 060        |
| • | RUI       | BUT DEPIH INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 940 4.00 6.0012.00                       | 18.0 1  | .50   | 1.74 .51    | 1.02 | 625     | MAR-2      |
| • | NSECT     | SECTION NUMBER OF REFERENCE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960 4.00 6.0012.00                       | 18.0 1  | .50   | 1.75 .53    | .99  | 625     | APR-2      |
| • | FUNTH     | HONTH FUR WHICH PSI IS CALCULATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970 4,00 6.0012.00                       | 18.0 1  | .50   | 1.76 .53    | .98  | 625     | MAY-2      |
| ٠ |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 980 4.00 6.0012.00                       | 10.0 1  | .50   | 1.76 .54    | .95  | 625     | JUN-2      |
|   |           | 5V2 = 10 + 0 + 5VX - 1 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 985 4.ú0 4.0012.úo                       | 18.0 1  | .50   | 1.76 .54    | .94  | 625     | JUL-2      |
| • | 542       | SLUPE VARIANCE OF THE SECTION AT THE BEGINNING OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 990 4.00 6.0012.00                       | 18.0 1  | .50   | 1.77 .54    | .94  | 625     | NOV-2      |
| * |           | ANALYSIS PERIOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 5.00 6.00 4.00                         | 16.0 1  | .50   | .50 0.00    | 4.08 | 615     | B          |
| * |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 5,00 6.00 4.00                        | 16.0 1  | .50   | .78 .17     | 3.44 | 615     | APR+1      |
|   | •         | B = -9.07136 + 0.07108+AL0G10(1.0+CI) + 0.0245+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 18.0 1  | .50   | .97 .16     | 3.04 | 615     | MAY-1      |
|   | -         | ALUGIO(1:0+C1+=2+0+ 0.00//SALUGIO(1:0+C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 640 3,00 6,00 4,00<br>840 5 00 6 00 4 00 | 18.0 1  | .50   | 1.51 .17    | 1.84 | 615     | JOL        |
|   |           | -340 + 0.0037 + 0.0047 + 0.00473 + 0.00175 + 0.00175 + 0.00175 + 0.000775 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 + 0.00175 |                                          | 16.0 1  | , 30  | 1.07 .30    | 1.43 | 615     | UEC        |
|   |           | 011 - 0:00300-wi + 0.0H323-4KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 5 00 6.00 4.00                       | 16:0 1  | .50   | 1.60 .37    | 1.33 | 515     | MAK-2      |
| - |           | 5V = {10+0==TAN(H) =1+0 +507==0.55 += 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 5.00 5.00 4.00                         | 18-1 1  | 20    | .20 0.00    | 1+   | 420     | 454-5      |
| • | Sv        | CALCULATED VALUE OF SLOPE VARIANCE AT ANY TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 5.00 0.00 4.00                        | 18.0 1  | 20    | .35 .16     | 4.20 | 420     | MAR-1      |
|   |           | AFTER BEGINNING OF ANALYSIS PERIOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140 5.00 0.00 4.00                       | 18.0 1  | .20   | .80 .16     | 3.35 | 629     | APR-1      |
| • |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 860 5.00 6.00 4.00                       | 18.0 1  | .20   | 1.57 .35    | 1.56 | 629     | DEC-2      |
|   |           | SAF = %F00f0(1*0+2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 870 5.00 4.00 4.00                       | 10.0 1  | .20   | 1.58 .36    | 1.54 | 629     | FEB-2      |
| • | 5 V L     | CALCULATEC VALUE OF ROUGHNESS INDEX LOG()+SV) AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £80 5.00 6.00 4.00                       | 18.0 1  | .20   | 1.55 .36    | 1.52 | 629     | NAR-2      |
| • |           | ANY TIME SFIER BERINNING OF ANALYSIS PERIOD #ROUGH IND-T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900 5,00 6,00 4.00                       | 18.0 1  | .20   | 1.60 .37    | 1.48 | 629     | APR-Z      |
| • |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 2.00 4.00 8.00                         | 12.0 1  | • 90  | .89 0.00    | 3.32 | 159     | R          |
|   |           | Pare = 5-03 = 1-91-ALOG10(1-0-5V) = 1-38-AD1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X10 2.00 3.00 8.00                       | 12.0 1  | .40   | 1.37 .33    | 2.11 | 159     | FEB        |
|   | FSIC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 570 2 00 3 00 8 00                       | 12.0 1  | .90   | 1.45 .34    | 1.92 | 159     | MAR        |
|   |           | CALCERALD ALOC OF PAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 12.0 1  | .70   | 1.74 .35    | 1.41 | 159     | APR        |
| - | PRIN      | 50. CT. CO. DT. DTH. MT. NXI. SVX. SVI. POT. PSTC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 12-0 1  | .50   | 10 0.00     | 1+40 | 124     | 547        |
|   |           | NECTA MONTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 3.00 0.00 4.00                       | 12.0 1  | .50   | 1.04 .08    | 2.90 | 161     |            |
|   | 50 FCRMAT | ( 5×+ F3+0+ 3F5.2+ F7+1. 13+ F6.2+ F7.2+ F6.2+ F7.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 450 3.00 0.00 4.00                       | 12.0 1  | .50   | 1.31 .09    | 2.30 | 163     | APR        |
|   | •         | A8+ 1X+ A8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 700 3.00 0.00 4.00                       | 12.0 1  | .50   | 1.50 .10    | 1.88 | 163     | MAY        |
|   | ĠĹ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 4.00 3.00 4.00                         | 12.1    | .70   | .70 0.00    | 3.69 | 151     | 8          |
| 5 | is ((     | INTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 4.00 3.00 4.00                        | 12.0 1  | .70   | 1.03 .27    | 2.87 | 151     | APR        |
|   | ENU       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180 4.00 3.00 4.00                       | 12.9 1  | .70   | 1.19 .27    | 2.53 | 151     | MAY        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>320 4,00 3,00 4.00</b>                | 12.0 1  | .70   | 1.51 .28    | 1.92 | 151     | JUN        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 4.00 6.00 0.00                         | 12.0 1  | .70   | .71 0.00    | 3.68 | 161     | 8          |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 4,00 0.00 0.00                        | 12.0 1  | .70   | .97 .26     | 3.00 | 161     | APR        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 4,00 0,00 0,00                       | 12.0 1  | •70   | 1.16 .27    | 2.59 | 161     | MAY        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450 4.00 0.00 J.UQ                       | 12.0 1  | .70   | 1.47 .28    | 1+91 | 161     | JUN        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 550 4.00 5.00 0.00<br>803 4.00 6.00 5.00 | 14.1    | • 10  | 1.02 .29    | 1.56 | 161     | JUL        |
|   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 604 4°04 5°00 7°00                       | 12.00 1 | .10   | 11/4 130    | 1.54 | 101     | 406        |

· ·

\*

298

• • • •

| • • • • • • •      |                     | -           |         |         |        |     | -     |
|--------------------|---------------------|-------------|---------|---------|--------|-----|-------|
| 0 4 00 8 00 0 00   | 14.0 1              | • 10        | • 1 1   | 0,00    | 3.08   | 144 |       |
| 10 4.00 4.00 0.00  | 12.0 1              | ,70         | .82     | .10     | 3.41   | 149 | MAR   |
| 50 4.00 0.00 0.00  | 12.0 1              | 70          | .97     | .10     | 3.08   | 149 | APR   |
| 150 4.00 6.00 0.00 | 12.0 1              | 70          | 1.16    | •11     | 2.68   | 149 | MAY   |
| 0 1.00 3.00 0.00   | €.0 1               | 75          | .74     | 0.00    | 3.61   | 744 | 8     |
| 10 1.00 3.00 0.00  | 6.0 l               | 75          | .85     | .09     | 3.36   | 744 | DEC   |
| 11 1.00 3.00 0.00  | 6.0 1               | .75         | .86     | -09     | 1.35   | 744 | JAN   |
| 140 1.00 3.00 0.00 | 6.U 1               | . 75        | 1.15    | .10     | 2.70   | 744 | FFH   |
| 0 1.00 6.00 4.00   | A.0 1               | .90         | .91     | 0.00    | 3.30   | 720 | 8     |
| 150 1 00 6.00 4.00 | 6.u 1               | . 90        | 1 30    | 0.00    | 3 41   | 720 | A 00  |
| 220 1 00 6 00 4.00 | 4.0 1               |             | 1 37    | •17     | 2 21   | 720 | NAV-1 |
|                    | 4 0 1               | • 70        | 1 4 9 1 | •1•     | 2.23   | 720 | mar-1 |
| 330 1.00 0.00 4.00 | 0.0 1               | •70         | 1.00    | •1•     | 2.00   | 720 | JU#=1 |
| 380 1.00 0.00 4.90 | 6.0 1               | .90         | 1.52    | +14     | 1.91   | 720 | JUL-1 |
| 580 1.00 0.00 4.00 | e.u 1               | 90          | 1.00    | +15     | 1.58   | 720 | DEC-2 |
| 650 1.00 6.00 4.00 | 6.0 1               | 90          | 1.71    | •30     | 1.39   | 720 | FEB-2 |
| 700 1.00 6.00 4.00 | ۥU ]                | 90          | 1.74    | •30     | 1.32   | 720 | MAR-2 |
| 0 2.00 3.00 4.00   | e.0 1               | 50          | .51     | 0.00    | 4.06   | 742 | B     |
| 210 2.00 3.00 4.00 | é.0 1               | .50         | 1.12    | .12     | 2.73   | 742 | MAR   |
| 840 2.00 3.00 4.00 | 6.0 I               | .50         | 1.68    | .14     | 1.51   | 742 | DEC-2 |
| 850 2.00 3.00 4.00 | 6.0 1               | .50         | 1.68    | .15     | 3.49   | 742 | JAN-2 |
| 860 2.00 3.00 4.00 | 6.0 1               | 1 .50       | 1.69    | .15     | 1.48   | 742 | FF8-2 |
| PTO 2.00 3.00 4.00 | 6.0 1               | 50          | 1.70    | . 29    | 1.48   | 742 | MAN-2 |
| 0 2 40 3-00 4-00   | 6.6                 | .70         | .70     | 0.00    | 7.68   | 710 |       |
| 80 3 00 3.00 4.00  | 6.0                 | .70         | 1.06    | 20      | 3.10   | 710 | AD0-1 |
| 30 2.00 3.00 4.00  | 4 1 1               | • • • •     | 1.00    | +27     | 2019   | /10 | APR-1 |
| 210 2.00 3.00 4.00 | C•0 1               | • • • •     | 1.2     | •14     | 2.31   | 710 |       |
| eru 2.00 3.00 4.00 | e.0 1               | •/0         | 1.10    | •24     | 1.20   | 710 | MAH-2 |
| 720 2.00 3.00 4.00 | C+U 1               | • • • • •   | 1.1     | •29     | 1+19   | /10 | HAT-2 |
| 950 2.00 3.00 4.00 | 6.0                 | • <u>/0</u> | 1.61    | •30     | 1+14   | 710 | JUN-2 |
| 970 2.00 J.00 4.00 | e.0 1               | • 10        | 1,82    | •31     | 1+11   | 710 | JUL-2 |
| u 1.uo 3.oo 3.oo   | <b>2</b> •0 1       | .80         | •80     | 0.00    | 3.49   | 743 | 8     |
| 50 1.u0 3.00 J.00  | 5.0 1               | L .80       | 1.05    | •06     | 2 • 95 | 743 | MAY   |
| 200 1.00 3.00 0.00 | 2.0 1               | L .80       | 1.20    | .22     | 2.37   | 743 | JAN-2 |
| 220 1.00 3.00 0.00 | 2.0                 | L .80       | 1.31    | •23     | 2.31   | 743 | FEH-2 |
| 250 1.00 3.00 D.00 | 2.0 1               | L .80       | 1.34    | •24     | 2.24   | 743 | MAR-2 |
| 350 1.00 3.00 0.00 | 2.0 1               | L .00       | 1.43    | .25     | 2.02   | 743 | APR-2 |
| 0 1.00 3.00 4.00   | 2.0 1               | .80         | .81     | 0.00    | 3.48   | 717 | A     |
| 170 1.00 3.00 4.00 | 2.0                 | .80         | 1.26    | +05     | 2.49   | 717 | SEP   |
| 300 1.00 3.00 4.00 | 2.0                 | 1 .80       | 1.40    | 19      | 2.14   | 717 | MAR   |
| 370 1.00 3.00 4.00 | 2.0                 | i .80       | 1.46    | 19      | 2.00   | 717 | APR   |
| 450 1 00 3.00 4.00 | 2.0                 |             | 1.53    | .20     | 1.84   | 717 | MAY   |
| 0 2 00 0.00 4.00   | 2.0                 | .60         | . 61    |         | 3.87   | 720 | 2     |
|                    | 2.0                 | 60          | .71     | 1.0     | 3 59   | 720 |       |
|                    | 3 6 1               |             |         | •10     | 3.17   | 720 | 400   |
|                    | <b>E</b> • <b>V</b> | 1 60        |         | •!!     | 3.17   | 729 | APR   |
|                    | 5 0 1               |             |         | •12     | 3.11   | 729 | NAV   |
| 250 2.00 0.00 4.00 |                     |             | 1.53    | •13     | 2.30   | 129 |       |
| 0 3.00 3.0012.00   | 22                  |             | • • • • | 0.00    | 3.94   | 429 |       |
| 55 3.00 3.0012.00  | 26.                 |             | .00     | • 36    | 3.12   | 429 | OEC   |
| 110 3.00 3.0012.00 | 20.                 | <b>.</b> 00 | • 97    | •39     | 5.81   | 429 | JAN   |
| 300 3.00 3.0012.00 | 22.4 1              | .00         | 1.20    | •40     | 2.34   | 429 | MAR   |
| 0 3.00 3.0012.00   | 22+4 1              | .30         | •27     | 0.00    | 4.52   | 415 | 8     |
| 10 3.00 3.0012.00  | 22.4                | L .30       | •41     | .35     | 4 • 05 | 415 | NOV   |
| 50 3.00 3.0012.00  | 22.4                | l .∃o       | .60     | .38     | 3.62   | 415 | DEC   |
| 210 3.00 3.0012.00 | 22.4                | .30         | . 92    | .40     | 2.91   | 415 | FE8   |
| 300 3.00 3.0012.00 | 22.4                | L .30       | 1.03    | .40     | 2.67   | 415 | MAR   |
| 0 4.00 6.00 8.00   | 22.4                | l ,50       | .48     | 0.00    | 4+11   | 453 | 8     |
| 10 4.00 6.00 8.00  | 22.4                | .50         | .61     | .25     | 3.74   | 453 | DEÇ   |
| 45 4.00 6.00 8.00  | 22.4                | .50         | .77     | .27     | 3.39   | 453 | FER   |
| 70 4.00 6.00 8.00  | 22.4                | 1 .50       | .84     | .28     | 3.24   | 453 | MAR   |
| 250 4.00 4.00 8-00 | 22.4                | .50         | 1.12    |         | 2.15   | 453 | APH   |
| 0 5.00 9.00 4.00   | 22.4                |             | . 35    | 0.00    | 4.17   | 475 | 8     |
| 10 5.00 9.00 4.00  | 22.4                | .36         | .49     |         | 3.99   | 475 | HAR-1 |
| 94 5 00 9.00 4.00  | 22.4                |             | e 7 3   | • * * * | 3.77   | 476 | A08-1 |
| 10 0000 FRUU 4600  | 6647 1              |             |         | • < <   | 3072   | 413 |       |

| 660          | 5.00         | 9-00 4-00                 | 22.4      | 1  | . 76    | 1.47    |                  |       | 47E   | OCT     |
|--------------|--------------|---------------------------|-----------|----|---------|---------|------------------|-------|-------|---------|
| 970          | E 00         | H 00 4 00                 |           | •  |         | 1.77    | •23              | 1.120 |       | UC1     |
| 0/0          | 2.04         | 3.00 4.00                 | 22.07     |    | * 32    | 1.05    | •23              | 1.57  | 475   | NOV     |
| 500          | 5.00         | 9.00 4.00                 | 22.4      | 1  | .35     | 1.64    | .48              | 1.20  | 475   | MAR-2   |
| 920          | 5.40         | 9.00 4.00                 | 22.4      | 1  | 35      | 1.65    | 40               | 1 24  | 475   | A08-3   |
|              | 3 0.0        | 6 0012 00                 |           | ÷. |         |         |                  | 1.57  |       | APR-2   |
|              | 3.00         | 0.0012.000                |           |    |         | .09     | 0.00             | جد.د  | 407   | 8       |
| 132          | 1°06         | 0.0012.00                 | 22.4      | 1  | .90     | 1.23    | .48              | 2.24  | 487   | FEB     |
| 200          | 3.00         | 6.0012.00                 | 22.4      | 1  | - 90    | 1.31    |                  | 2.06  | 487   | MAD     |
| 610          | 1 00         | 6 0013 00                 | 22.4      |    |         |         |                  |       |       |         |
|              | 3.00         | 0.0012.00                 | 22        | 1  |         | 1.02    | .49              | 1.51  | 487   | APR     |
| e80          | 3.00         | 0.0015.00                 | 22.4      | 1  | .90     | 1.05    | .50              | 1.27  | 487   | MAY     |
| 980          | 3.00         | 6.0012.00                 | 22.4      | 1  | - 90    | 1.82    | .54              | . 84  | 487   | IAN-2   |
| 0            | 5 00         | 9.00 4.00                 | 22.4      | ī  | 40      |         |                  |       | 407   | 04-2    |
|              |              |                           | 22        |    |         |         | 0.00             | 4.61  | 40J   | 8 .     |
| 10           | <b>∍</b> ,00 | 9.00 4.00                 | 22.4      | 1  | .40     | . 34    | •22              | 3.90  | 483   | MAR-1   |
| 90           | 5.00         | 9.00 4.00                 | 22.4      | 1  | .40     | .83     | . 22             | 3.28  | 483   | APP-1   |
| 660          | 5.00         | 9.00 4.00                 | 22.4      | ī  |         | 1.44    |                  |       | 493   | 007-7   |
| 6 7 0        |              |                           |           | •  |         | 1.40    | • 2 3            | 1.51  | 403   | 001-2   |
| 610          | 3.00         | <b>7.</b> 00 <b>4.</b> 00 | 22.07     | 1  | • • 0   | 1.03    | •23              | 1.54  | 483   | NOV     |
| 680          | 5.00         | 9.00 4.00                 | 22.4      | 1  | .40     | 1.64    | .24              | 1.52  | 483   | OFC-2   |
| 885          | 5.00         | 9.00 4.00                 | 22.4      | 1  |         | 1.64    |                  |       |       |         |
| 000          |              | 9 00 4 00                 |           | :  |         |         | • • • •          | 1.21  |       | JAN     |
| <b>7</b> 00  | 3.00         | 7.00 4.00                 | 22.09     | 1  | ••0     | 1.00    | .48              | 1+25  | 483   | MAR-2   |
| 0            | 2,75         | 9.0011.00                 | 18.0      | 1  | .43     | .44     | 0.00             | 4.20  | FXMP  | DCT     |
| 11           | 2.75         | 9.0011.00                 | 18.0      | 1  | .43     | .59     | . 37             | 3.60  | FYMD  | 050     |
|              | 3 36         |                           |           | :  |         |         | • 3 •            | 3.07  | LANE  | DEC     |
|              | 2.13         | ******                    | IC .V     | 1  | ••3     | .03     | •38              | 3+11  | EXMP  | FEU     |
| 369          | 2.75         | 9.0011.00                 | 18.0      | 1  | .43     | 1.27    | .40              | 2.19  | Ехмр  | APR     |
| 793          | 2.75         | 9.0011.00                 | 18.0      | 1  | .43     | 1.62    | .42              | 1.41  | FYMD  | 11.134  |
| 633          | 3 96         | 9                         |           | •  |         |         |                  | 1     | E AND | 304     |
| 132          | 2.13         | 30011000                  | IC+V      | +  | ••3     | 1+12    | • 4 3            | 1.19  | EXKP  | AUG     |
| 960          | 2.75         | 9.0011.00                 | 16.0      | 1  | •43     | 1.73    | .44              | 1.14  | EXMP  | OCT     |
| 968          | 2.75         | 9.0011.00                 | 18.0      | 1  | .43     | 1.74    | .45              | 1.12  | FYND  | DEC     |
| 073          | 3 75         | 9 0011 00                 |           |    |         |         |                  |       |       | 020     |
| 273          | 2.13         | *******                   | 10.00     | +  | •••     | 1 + 1 * | .45              | 1+11  | EXAP  | PEB     |
| 985          | Z.75         | A*0011*00                 | · 1/8 • 0 | 1  | .43     | 1.75    | .46              | 1.08  | EXMP  | APR     |
| 995          | 2.75         | 9.0011.00                 | 18.0      | 1  | .43     | 1.76    | .47              | 1.05  | FYMD  | AHG     |
| 999          | 2 75         | 9-0011-00                 | 18.0      | i  |         | 1.74    |                  |       | E van | 007     |
|              | 2.10         | 6 00 0 00                 | 1000      | •  | •73     | 1.10    |                  | 1.05  | CAMP  | 001     |
|              | 3.00         | 0.00 0.00                 | 10.0      | 1  | • • • • |         | 0.00             | 4.43  | 62JE  | 8       |
| 90           | 3.00         | 6.00 8.00                 | 18.0      | 1  | .43     | .84     | .34              | 3.16  | 623E  | FEO     |
| 160          | 3.00         | 6.00 8.00                 | 18.0      | 1  | .43     | .97     | 34               | 2.80  | 6236  | MAD     |
| 400          | 3 60         | 6 00 0.00                 |           |    |         |         | • 37             | 2.07  | 6232  |         |
|              | 3.00         | 0.00 0.00                 | 10.0      |    | ••3     | 1.420   | • 35             | 2.20  | OZJE  | APR     |
| <b>e o</b> 0 | 3.00         | 0.00 8.00                 | 1.6.0     | 1  | .43     | 1.43    | .36              | 1.87  | 623E  | MAY     |
| 840          | 3.00         | 6.00 8.00                 | 18.0      | 1  | .43     | 1.60    | .36              | 1.50  | 623F  | .0.0    |
| 920          | 3.00         | 6.00 8.00                 | 18.0      | ī  |         | 1.66    |                  | 1 30  | 6335  |         |
| 040          | 3.00         | 6 00 0 00                 | 10.0      | ÷. | ••••    | 1.00    | • 3 /            | 1.38  | 0235  | JUL     |
| 200          | 3.00         | 0.00 8.00                 | 19.0      | 1  | .+J     | 1.08    | •38              | 1.31  | 623E  | AUG     |
| 0            | 3.00         | 9.0010.00                 | 18.0      | 1  | .43     | .44     | 0.00             | 4.20  | EXMP  | 007     |
| 7            | 3.00         | 9.0010.00                 | 16.0      | 1  | . 4 3   | 55      | 9.7              | 3 74  | EVNO  | 0FC     |
|              | 3            | 8 0010 00                 |           |    |         |         | • 3 /            | 3410  | CAMP  | UEC     |
| - 7 /        | 3.00         | A+0010+00                 | 10.0      | 1  | •*J     | • / 9   | •39              | 3+24  | EXMP  | FEB     |
| 301          | 3.00         | 9.0010.00                 | 18.0      | 1  | •43     | 1.20    | •40              | 2.35  | EXMP  | APR     |
| 756          | 3.00         | 9.0010.00                 | 18.0      | 1  | .43     | 1.60    | .43              | 1.44  | FVMD  | ILIN    |
| 922          | 1.00         | 9.0010-00                 | 18-0      | ī  |         | 1 . 71  | -75              | 1     | EVHA  | AUG     |
| 265          | 3.00         |                           | 10.0      | ÷. | •••     | 1.11    | • <del>•</del> J | 1•40  | EXMP  | AUG     |
| 324          | 3.00         | A*0010*00                 | 18.0      | 1  | .43     | 1.73    | .44              | 1.15  | EXMP  | 007     |
| 962          | 3.00         | 9.0010.00                 | 18.0      | 1  | .43     | 1.74    | .45              | 1.12  | FXMP  | DEC     |
| 967          | 3.00         | 9-0010-00                 | 18.0      | ĩ  | 43      | 1.74    |                  | 1 10  | EvNo  | 559     |
|              | 3 00         | 0 0010 00                 |           | :  |         |         |                  | 1410  | CAMP  | FEO     |
| 980          | 3.00         | *•0010•V0                 | 16.0      | 1  | ••3     | 1.75    | +46              | 1.09  | EXMP  | APR     |
| 994          | 3,00         | 9.0010.00                 | 18.0      | 1  | .43     | 1.76    |                  | 1.05  | EXMP  | . 11 IN |
| 997          | 3.00         | 9-0010-00                 | 18-0      | 1  | 43      | 1.76    | 17               | 1 05  | EVMO  | 406     |
| 000          | 3 00         | 9 0010 00                 | 10 0      | :  |         |         | • • •            | 1.02  | CAMP  | 400     |
| 770          | 3.00         | ********                  | 10.0      | 1  | • • 5   | 1+10    | •48              | 1.03  | EXMP  | UCI     |
| 0            | 4,50         | ¥.00 4.00                 | 18.0      | 1  | .43     | .44     | 0.00             | 4.19  | EXMP  | 001     |
| U            | 4,50         | 9.00 4.00                 | 18.9      | 1  | .43     | .44     | .19              | 4.14  | EXMP  | DEC     |
|              | 4.60         | Y-00 4-00                 | 1.6       | ī  |         |         | -11              |       | EVHA  | 569     |
|              | 4 5 0        |                           | 16.0      | ÷. | ••3     | • 22    | • 21             | 3.422 | CARP  | 150     |
| 23           | • • >0       | 7.00 4.00                 | 16.0      | 1  | .43     | •78     | •22              | 3.40  | EXMP  | APR     |
| +51          | 4.50         | 9.00 4.00                 | 18.0      | 1  | .43     | 1.35    | .22              | 2.16  | EXMP  | JUN     |
| 786          | 4.50         | Y.00 4.00                 | 18.0      | ĩ  | .43     | 1.62    |                  | 1.57  | FYMD  | ALIG    |
| 857          |              | N 00 4.00                 |           | :  |         | 1 1 1   | • 2 3            |       | EAMP  | -00     |
| 000          |              |                           | 16.0      | 1  | ••3     | 1.0/    | •24              | 1.47  | EXMP  | 001     |
| 601          | 4.50         | ▼•0C 4•00                 | 1e.J      | 1  | .43     | 1,68    | •24              | 1.45  | EXMP  | DEC     |
| 276          | 4,50         | 9.00 4.00                 | 16.3      | 1  | .43     | 1.69    | .25              | 1.43  | EXNP  | FFB     |
| \$05         | 4.50         | 7.00 4.00                 | 16.0      | ī  | 43      | 1 7     |                  |       | EVHO  | 400     |
| 64           |              |                           | 1040      |    | ••3     | 1 + 1 1 | •25              | 1.30  | E AMP | APR .   |
| 700          | • • 50       | ▼⊕0C 4+00                 | 16.0      | 1  | .43     | 1.74    | •25              | 1.31  | EXMP  | JUN     |

| 007         |         | 43 A.A. 1. (). |        | •          | 4.7     |      | - 4   |        | e       |           |
|-------------|---------|----------------|--------|------------|---------|------|-------|--------|---------|-----------|
| 203         | 4,30    | *.UU *.U(      | 0 1c°A |            | .*3     | 1,/0 | .50   | 1,47   | E X MP  | AUG       |
| 989         | 4.50    | 9.00 4.00      | 0.81 0 | 1          | .43     | 1.76 | .26   | 1.26   | EXMP    | 007       |
| 1:          | 4.50    | 9.66 4.00      | 16.0   | 1          | - 43    | .44  | 0.00  | A . 19 | EXMP    | . It H. Y |
| 47          | 4 50    | 9 00 4.00      | 14     | - ī        | 4.3     |      |       |        | ExHO    | 500       |
|             | 4.30    |                | 10.00  |            |         | •02  | 162   | 3+30   | EXHIP   | 36        |
| 146         | 4,50    | 9.00 4.UC      | ) 16.J | 1          | .43     | 1.03 | •26   | 2:65   | EXMP    | NOV       |
| 199         | 4,50    | 9.0C 4.V(      | 0 18.0 | 1          | ,43     | 1.07 | .28   | 2.74   | EXMP    | JAN       |
| 239         | 4.56    | 9.00 4.00      | 18-0   | 1          | . 43    | 1.12 | . 20  | 2.61   | FYND    | M 5 8     |
| 690         | A 60    | H CC 4 14      | 16.0   | :          |         |      | 167   | 2.01   | ENNE    |           |
|             |         |                | 10.00  |            | • • • • | 3    |       | 1 * 70 | C A MM  | MAT       |
| 003         | 4.50    | 7.04 9.04      | 15=0   | - <u>+</u> | • • 3   | 1.04 | •30   | 1*20   | EXMP    | JULT      |
| 895         | 4,50    | 9.00 4.00      | D 18.0 | 1          | ,43     | 1.70 | .30   | 1.36   | EXNP    | SEP       |
| 915         | 4,50    | 9.00 4.00      | 18.0   | 1          | .43     | 1.71 | .30   | 1.33   | EXHP    | NOV       |
| 923         | 4.50    | 9.00 4.00      | 18.0   | 1          | . 4 7   | 1.72 | . 31  | 1 71   | FYMD    | IAN       |
| 0.20        | 4 60    | 9 00 4.00      | 10 0   | - ī        |         |      |       |        |         |           |
| 000         | 4 64    | 0 00 4 00      |        | •          | 143     | 1.12 | +31   | 1,30   | E AMP   | FAR       |
| 700         | 4.30    | 7.00 4.00      | a Tcen | - ÷        | 473     | 1+/* | •32   | 1.40   | 5 XMP   | MAY       |
| 581         | 4,50    | ¥.⊎0 4.0(      | 0 18.V | 1          | .43     | 1.76 | .32   | 1.22   | EXMP    | JULY      |
| 0           | 3.50    | 9.00 8.00      | 0 18.0 | 1          | .43     | .44  | 0.00  | 4.20   | EXMP    | 001       |
| 3           | 3.50    | 9.00 8.00      | ດ ຳຢ_ມ | ñ          | . 43    | 50   | . 12  | 3.91   | EVNO    | OFC       |
| 34          | 3 64    | 9 00 4.00      |        | ÷.         | 4.3     |      | *32   |        | 6       | 500       |
|             | 3.30    | F              | 0 10+0 |            | + - 3   | 100  | • 3 • | 3+33   | SXMP    | 760       |
| 192         | 3.30    | 7.00 0.01      | 0 16.0 | 1          | • • 3   | 1.05 | •30   | 5.15   | EXMP    | APR       |
| 665         | 3,50    | A*00 N*00      | ) 10.0 | 1          | +43     | 1,53 | •36   | 1.67   | EXMP    | JUN       |
| 891         | 3.90    | 9.06 Seve      | 18.0   | 1          | .43     | 1.69 | . 38  | 1.30   | EXMP    | AUG       |
| 032         | 3.50    | 9.00 4.00      | 16.0   | ĩ          | 43      | 1.72 | 30    |        | EVND    | 00.7      |
| 0.2         | 3 60    | U AA a 34      |        | :          |         |      | • 3 7 | 1.00   | 5       |           |
| 744         | 3,30    | ***** d***     | n Tean |            | 3       | 1.73 | 440   | 1+41   | EXMM    | DEC       |
| 948         | 3.50    | A*08 8*6(      | 15.0   | 1          | +43     | 1.73 | -49   | 1.20   | F X H D | FEB       |
| <b>965</b>  | 3,50    | ¥.00 8.00      | 18.0   | 1          | .43     | 1.74 | .41   | 1.16   | EXMP    | APR       |
| 988         | 3.50    | 9.00 8.00      | 0 16.0 | 1          | . 43    | 1.76 |       | 1.13   | EXMP    | JUN       |
| 995         | 3.50    | 9.00 3.00      | 18.0   | ī          |         | 1.76 |       | 1.11   | FYHD    | AUG       |
| 607         | 3 5 5 5 | W 00 H 0       |        | •          |         |      |       | 1.11   | C       |           |
|             | 3.30    | 9.00 C.00      | 10.0   | - 1        |         | 1+/0 | •+J   | 1.09   | CXMP    | OCI       |
| Q           | 5.00    | e*0015*n(      | 30.0   | 1          | .30     | .27  | 0.00  | 4,52   | 305.    | 8         |
| 50          | 5,00    | 6.0012.00      | D 30.U | 1          | .30     | . 60 | .33   | 3.67   | 305     | MAR       |
| 400         | 5.00    | 6.0012.00      | 0.06 0 | 1          | .30     | 1.14 | . 74  | 2.49   | 305     | MAY       |
| 730         | 5.00    | 6.0012.00      | 30.0   | ĩ          | -30     | 1.40 | .40   | 1.56   | 365     | RM        |
|             | 5 00    | 6 0513.0       | 30.0   | - 7        | 3.      |      |       |        | 303     |           |
| 000         | 2.00    | 010012001      | 30.0   |            | . 30    | 1+21 | *43   | 1+31   | 305     | JULT      |
| 300         | 3.00    | 0.0012.00      | 90.0   | _ <u>1</u> | + 30    | 1.9/ | • 5 5 | 1+14   | 305     | JAN       |
| 0           | 3,00    | 0.0012.00      | 0 30+0 | -1         | ,25     | •22  | 0.00  | 4.61   | 307     | 8         |
| 50          | 5.00    | 6+0012+00      | 0 30.0 | 1          | ,25     | .55  | .33   | 3.75   | 307     | MAR       |
| 400         | 5.00    | 6.0012.01      | 0 30.0 | - î        | . 25    | 1.12 | . 74  | 2.54   | 367     | MAY       |
| 730         | 5.00    | 6-0012-00      | 30.0   | ĩ          | 26      | 1.40 | 40    | 1 60   | 307     | 11.161    |
| 64.0        | E       | 5 001E 00      | 30.0   | - :        |         | 1.40 | .00   | 1.00   | 301     |           |
| 600         | 3.00    | 0.0012.00      | 30.0   | 1          | .23     | 1.44 | •63   | 1+35   | 307     | JULY      |
| 400         | 5.00    | 0-0012-00      | 0 36+0 | - <b>1</b> | •25     | 1.55 | •65   | 1.17   | 307     | JAN       |
| 0           | 4.00    | 6.0012.00      | 0 30.ú | - 1        | ,50     | •46  | 0.00  | 4.15   | 323     | 6         |
| 50          | 4.00    | 6.0012.00      | 0.05 0 | 1          | .50     | .75  |       | 3.30   | 323     | JAN       |
| 110         | 4.00    | 6.0012.00      | 30.0   | - ī        | .50     | . 88 |       | 3.01   | 223     | FER       |
| 160         | 4 40    | 6.0012.04      |        | ÷.         |         |      |       | 3.01   | 323     |           |
| 100         | 4.00    | 0.0012.00      | 30.0   |            | .50     |      | 140   | 2.02   | 323     | mgR       |
|             | 4.00    | 0.0012.00      | 0 36.0 | 1          | *20     | 1.20 | •43   | 2+16   | 323     | APH       |
| 870         | 4.00    | 0.0015.00      | 0 30.0 | 1          | .50     | 1.56 | .44   | 1,49   | 323     | JUN       |
| Ű           | 6.00    | 9.0012.00      | 0 30.u | 1          | . 30    | .29  | 0.00  | 4.48   | 311     | 8         |
| 1.0         | 6.40    | 9-0012-00      | 30     | ī          | . 30    |      | . 34  | 4.01   | 111     | MAD       |
| 160         | A 00    | 9.0012.00      | 30.0   | 1          | 30      |      |       | 2.00   | 311     |           |
| 190         | 0.00    | - HONTEON      | 30+0   |            | **0     | .0/  |       | 3.4014 | 311     | HAT.      |
| 470         | 0.00    | A+0015+00      | D 30u  | 1          | .30     | 1.26 | .36   | 2.22   | 311     | JUN       |
| 670         | 6.00    | A*0015*01      | 0 30.0 | 1          | .30     | 1.43 | .36   | 1.85   | 311     | JULY      |
| <b>89</b> 0 | 6.00    | 9.0012.00      | 0 30.U | 1          | .30     | 1.59 | . 37  | 1.50   | 111     | JAN       |
| \$20        | 6.00    | 9-0012-00      | 30.0   | ĩ          | 30      | 1.61 |       | 1.15   | 311     | APR       |
| 1000        | 6 04    | 9.6013         | 30     | - 1        |         | 1.47 | +00   | 1      | 311     | NOU       |
|             |         |                |        |            |         |      |       | أحانحا |         |           |

• • •

10 ALG 71 UNIVERSITY OF TEAAS 6600 UT 2

· · · · ·

.WE7517

• •

10.45.38 JAIN++07+70400+17.CEDC0154+SURN+ 10.44.38 JAIN..07.70000,17.CEOC0154.SURN. 10.45.38 P.N (S) 10.45.00 CTIME 000.301 SEC. RUNA LEVEL 604 10.45.40 CGIME 00.201 SEC. RUNA LEVEL 604 10.45.42 - 11700CM 0.208CP 48MS OMT 10.45.50 ENC - PSI 10.45.50 ENC - PSI 10.45.50 CP 1.688 SEC. 10.45.50 CP 3.987 SEC. 10.45.50 TM 2.144 SEC. 3 (OCTAL) ONT APPENDIX 5

.

.

.

.

-

٠

•

FLEXIBLE PAVEMENT PERFORMANCE RECORD



ь (

Fig A5.1. Typical AASHO Road Test section history (Ref 70)

302

٠

1. Z

.

.

.



· ·

\* \* , i

Fig A5.2. Typical AASHO Road Test section history (Ref 70).

• • •

۰.

APPENDIX 6

,

.

.

.

•

•

NOMENCLATURE

## APPENDIX 6. NOMENCLATURE

This appendix gives the nomenclature for the fatigue tests used in this report (Ref 35).

# Flexural Test for Asphalt Concrete

The following nomenclature applies to the flexural fatigue tests on asphalt concrete.

| N     | i   | The number of load applications of level i to cause |
|-------|-----|-----------------------------------------------------|
|       |     | failure in simple loading.                          |
| n     | i   | The number of actual load applications of level i . |
| e     |     | Bending strain in flexural fatigue test.            |
| A and | d B | Constants depending upon material characteristics.  |
| E     |     | Modulus of elasticity or stiffness.                 |
| μ     |     | Poisson's ratio.                                    |

# Repetitive Load-Deformation Tests on Base, Subbase, and Subgrade

The nomenclature used for repeated load tests on granular base and subbase and fine subgrade materials is given below. The nomenclature is also explained by Figs A6.1 and A6.2.

t Total cumulative deformation when the maximum load is applied to the specimen.

p Permanent cumulative deformation retained by the specimen between cyclic load applications.



Fig A6.1. Diagrammatic representation of changes in specimen lengths during load and unload cycles (after Ref 35).



Fig A6.2. Hypothetical repetitive load-deformation relationship indicating suggested nomenclature for various types of deformations (after Ref 35).

r Rebound non-cumulative deformation, which is equal to the difference between total and permanent deformation for any particular load application.

Transient non-cumulative deformation; deformation observed from zero to maximum stress for any particular load application.

### Note:

σ

- (1) Strains may be used instead of deformation.
- (2) Elastic refers to a condition where rebound or transient deformation approaches constant values over several stress repetitions.
- (3) Perfect resiliency is the state when continued loading produces no further total or permanent deformation, i.e., rebound equals the transient deformation.
- (4) Total strains in the triaxial load are analogous to the strain observed as a point in the roadway during application of the wheel load. Permanent strains may represent the net rut depth in the pavement.

APPENDIX 7

.

.

.

-

AASHO ROAD TEST AND PRESENT SERVICEABILITY CONCEPT

### APPENDIX 7. AASHO ROAD TEST AND PRESENT SERVICEABILITY CONCEPT

In this report the serviceability and performance concept using the performance data of the AASHO Road Test has been utilized to develop and verify the suitability of the suggested models. Thus, the purpose of this appendix is to discuss the AASHO Road Test and its performance conept.

### Introduction

The AASHO Road Test was conceived and sponsored by the American Association of State Highway Officials as a study of the performance and capabilities of highway pavement and bridge structures of known characteristics under moving loads of known magnitude and frequency. AASHO Road Test reports (Refs 67 -73) contain complete information about this test. The principal objective of the road test was to determine the significant relationship between pavement behavior and the major variables of design and loading. The construction of the test facility was completed in 1958. Traffic started to move over it in November 1958 and continued through November 1960. A total of 1,114,000 axle load applications was accumulated. Based on the results of the AASHO Road Test an Interim Design Guide was published in 1962.

### Pavement Performance

The popular pavement service and performance concept was also developed at the AASHO Road Test in 1962. The failure of a pavement system is generally not a catastrophic occurence, as is the case in some other structures. A pavement which has been designated as "failed" in some response may still be capable of carrying traffic at a reduced service level. It is clear that cracks will occur if a pavement is overstressed, but the question is how much they are going to affect the performance of the pavement. Cracks are undesirable but the degree of undesirability is not known. Comfort and convenience may be considered inherent manifestations of pavement performance. The performance of a pavement is influenced by many factors, including applied loads, tire pressure, number of load applications, and thickness and strength

characteristics of pavement layers and subgrade. Thus, functional pavement design should correlate these factors with desired performance characteristics.

To introduce the measure of pavement performance, certain terms used in the design methods were defined as below (Ref 70):

- (1) Present Serviceability Rating (PSR): The mean of the individual ratings made by the members of a specific panel of men selected for the purpose.
- (2) Present Serviceability Index (PSI): A mathematical combination of values obtained from certain physical measurements of a large number of pavements so formulated as to predict the PSR for those pavements within prescribed limits. This represents the ability of the pavement to serve high-speed, high-volume, mixed traffic in its existing condition. (The definition applies to the condition existing - on the date of rating, not to the condition assumed the next day or at any future or past date.)
- (3) Performance Index: A summary of PSI values over a period of time (See Fig A7.1).

### Present Serviceability Index Equation

Based on regression analysis of measurement and panel ratings on 49 rigid and 74 flexible pavement test sections, the following index equations were suggested (Ref 70):

For flexible pavements,

$$PSI = 5.03 - 1.91 \log (1 + \overline{SV}) - 1.38 \overline{RD}^2 - 0.01 \sqrt{C + P}$$
(A7.1)

For rigid pavements,

$$PSI = 5.41 - 1.78 \log (1 + \overline{SV}) - 0.09 \sqrt{C + P}$$
 (A7.2)

where slope variance  $\overline{SV}$  is the statistical measure of the variability of the slope of the pavement. It is a direct measurement of the longitudinal roughness of the pavement. A continuous analog trace of the pavement slope is obtained from the profilometer, and a point measurement of slope  $S_1$  at a one-foot interval is obtained. Then

$$SV = 10^6 \times slope variance = 10^6 \times \sigma_s^2$$


.

Fig A7.1. Performance curve.

$$= 10^{6} \sum_{t=1}^{n} (S_{1} - \overline{S})^{2} / (n-1)$$
 (A7.3)

where

n = number of measurements

 $\overline{S}$  = mean slope measurement

Rut depth RD is the measurement of the amount of permanent deformation in the transverse profile of the pavement. It is measured in inches below the center of a 4-foot span placed across the wheel path. These measurements are made throughout the length of the section and then averaged.

Cracking and patching C + P is the measurement of the major cracking (classes 2 and 3) and patching in square feet per 1000-square-foot area of flexible pavement. In rigid pavement, class 2 and sealed cracks are measured in feet by 1000 square feet area of pavement.

As seen from the PSI equation, slope variance is the most important single variable influencing the PSI of the pavement. Rutting plays a secondary role while cracking and patching was found to have only a minor role in determination of the serviceability or riding quality of the pavement. However, it is emphasized that this does not mean that cracking is of minor importance as far as the design or structural behavior, pavement life, or even the serviceability is concerned, because cracking in the pavement is itself indicative of other forms of distress and is a direct indication of a structural inadequacy somehwere in the pavement. By the time enough cracks are developed in the pavement it is already rough in terms of slope variance. Therefore, it seems that the slope variance is the cause of detrimental effects of cracking.

#### AASHO Road Test Data

AASHO Road Test data are a good source of performance data. Performance data in the form of plots of cracking and patching, roughness index, PSI, and rut depth are available for each test section. Typical plots of this data are shown in Appendix 5. These plots were used in the development and verification of the models discussed in this report.

APPENDIX 8

.

۰.

•

.

3

.

٠

•

COMPARISON OF DISTRESS MODELS - PLOTS









Fig A8.2. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.4. Computed cracking index (CI) versus observed cracking-patching (C + P).

Observed (inner wheel) ----- Calculated ----- Section Overlaid at Point • OL.





Fig A8.5. Computed cracking index (CI) versus observed cracking-patching (C + P).







Fig A8.6. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.8. Computed cracking index (CI) versus observed cracking-patching (C + P).

Observed (inner wheel) — — Colculated \*\*\*\* Observed (outer wheel) — — — Section Overlaid at Point = O.L



Fig A8.9. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.11. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.10. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.12. Computed cracking index (CI) versus observed cracking-patching (C + P).

Observed (inner wheel) — — — — Calculated — — — — — — — — Section Overloid at Point • O.L.





Fig A8.13. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.15. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.14. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.16. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.17. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.19. Observed versus calculated rut depth index.



Fig A8.18. Computed cracking index (CI) versus observed cracking-patching (C + P).



Fig A8.20. Observed versus calculated rut depth index.

Observed (inner wheel) — — Calculated Column 






Fig A8.21. Observed versus calculated rut depth index.



Fig A8.23. Observed versus calculated rut depth index.



•





Observed (inner wheel)  $\longrightarrow$  Calculated Observed (outer wheel)  $\longrightarrow$   $\sim$ 





Fig A8.27. Observed versus calculated rut depth index.





Observed (inner wheel) ----- Colculated Observed (outer wheel) -----

.







AASHO Road Test Section 627 Axle Load = 18k Thickness : Surface = 4 in. Rut Depth in Inches Bose = 3 in. 1.0 Subbase = 4 in. 0.8 0.6 0.4 0.2 0 1960<sup>Dec</sup> 1959<sup>Dec 1</sup> Aug-Oct Aug Oct Ŀep' Apr Jun Feb unر 0ct Apr Time (months) Fig A8.30. Observed versus calculated rut depth index.



Observed (inner wheel) — — — Calculated Observed (outer wheel) — — - - - —



.

rut depth index.





Fig A8.36. Observed versus calculated rut depth index.

Observed (inner wheel) --- Calculated Observed (outer wheel) ----



4







Fig A8.40. Observed versus calculated roughness index, RI.

Observed (inner wheel) ---- Calculated Observed (outer wheel) ----



Fig A8.43. Observed versus calculated roughness index, RI.





Fig A8.44. Observed versus calculated roughness index, RI.

Observed (inner wheel) ---- Colculated Observed (outer wheel) -----



Fig A8.45. Observed versus calculated roughness index, RI.











Observed (inner wheel) --- Calculated Observed (outer wheel) ----





Fig A8.51. Observed versus calculated roughness index, RI.







Fig A8.52. Observed versus calculated roughness index, RI.

Observed (inner wheel) --- Calculated Observed (outer wheel) ----



















Fig A8.60. Observed versus calculated present serviceability index.

Observed (inner wheel) --- Calculated Observed (outer wheel) ----



Fig A8.61. Observed versus calculated present serviceability index.



Fig A8.63. Observed versus calculated present serviceability index.



Fig A8.62. Observed versus calculated present serviceability index.



Fig A8.64. Observed versus calculated present serviceability index.

Observed (inner wheel) --- Colculated Observed (outer wheel) ---



،







Fig A8.71. Observed versus calculated present serviceability index.



Fig A8.70. Observed versus calculated present serviceability index.



Fig A8.72. Observed versus calculated present serviceability index.

Observed (inner wheel) — — — Calculated Observed (outer wheel) — — = —



,



Time (months)

Aug

Oct

Dec

960

Feb Apr un Aug

psi

2.0

1.0

0

0 0 0

Feb

Apr ۱un

Dec

959





Observed versus calculated Fig A8.76. present serviceability index.

Observed (inner wheel) ------Calculated Observed (outer wheel) -----

Oct







APPENDIX 9

,

. . **b** 

.

COMPUTER INPUT AND OUTPUT FOR EXAMPLE PROBLEMS

### TABLE A9.1. EXAMPLE PROBLEM

¥

\$

-

.

•

.

.

.

| THE CONSTRUCTION MATERIALS UNDER CONSIDERATION ARE<br>MATERIALS COST STR. MIN. MAX. SALVAG<br>LAYER COUE NAME PER CY CUEFF. DEPTH DLPTH PCT.<br>1 A ASPHALT CONCRETE 10.00 .44 3.00 3.00 50.00<br>2 B BASE MATERIAL 5.00 .14 6.00 6.00 50.00<br>3 C SUBRASE MATERIAL 2.00 .11 8.00 8.00 50.00<br>SUBBGRADE 0.00 0.00 0.00 0.00 0.00                                                                                                                          | E TRIAXIAL<br>CLASS<br>.50<br>1.00<br>3.70<br>5.60              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NUMBER OF OUTPUT PAGES DESIRED(A DESIGNS/PAGE)<br>TOTAL NUMBER OF INPUT MATERIALS•EXCLUDING SUBGRADE<br>LENGTH OF THE ANALYSIS PERIOD (YEARS)<br>WIDTH OF EACH LANE (FEET)                                                                                                                                                                                                                                                                                   | E<br>3.2<br>0.21                                                |
| REGIONAL FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                             |
| SERVICEABILITY INDEX OF THE INITIAL STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                             |
| SERVICEABILITY INDEX P1 AFTER AN OVERLAY                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2                                                             |
| MINIMUM SERVICEABILITY INDEX P2                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                             |
| SWELLING CLAY PARAMETERS ++ P2 PRIME                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.20                                                            |
| B1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                          |
| ONE-DIRECTION AUT AT BEGINNING OF ANALYSIS PERIOD (VEHICLES/UAY<br>ONE-DIRECTION AUT AT END OF ANALYSIS PERIOD (VEHICLES/DAY)<br>ONE-DIRECTION 2-YR ACCUMULATED NO, OF EQUIVALENT 18-KIP AXLFS<br>PROPORTION OF AUT ARRIVING EACH HOUR OF CONSTRUCTION (PERCENT)<br>THE RUAU IS IN A RURAL AREA,                                                                                                                                                             | ) 1370<br>1371<br>1102700<br>6•0                                |
| MINIMUM TIME TO FIRST OVERLAY (YEARS)                                                                                                                                                                                                                                                                                                                                                                                                                        | •5                                                              |
| MINIMUM TIME BETWEEN OVERLAYS (YEARS)                                                                                                                                                                                                                                                                                                                                                                                                                        | •5                                                              |
| TIME TO FIRST SEAL COAT AFTER INITIAL OR OVERLAY CONST.(YEARS)                                                                                                                                                                                                                                                                                                                                                                                               | 2•2                                                             |
| TIME BETWEEN SEAL COATS (YEARS)                                                                                                                                                                                                                                                                                                                                                                                                                              | 2•2                                                             |
| MAX FUNDS AVAILABLE PER SQ.YD. FOR INITIAL DESIGN (DOLLARS)                                                                                                                                                                                                                                                                                                                                                                                                  | 15•00                                                           |
| MAXIMUM ALLOWED THICKNESS OF INITIAL CONSTRUCTION (INCHES)                                                                                                                                                                                                                                                                                                                                                                                                   | 60•0                                                            |
| MINIMUM OVERLAY THICKNESS (INCHES)                                                                                                                                                                                                                                                                                                                                                                                                                           | 0•0                                                             |
| ACCUMULATED MAXIMUM DEPTH OF ALL OVERLAYS (INCHES)                                                                                                                                                                                                                                                                                                                                                                                                           | 8•0                                                             |
| ASPHALTIC CONCRETE PRODUCTION RATE (TONS/HOUR)                                                                                                                                                                                                                                                                                                                                                                                                               | 75.0                                                            |
| ASPHALTIC CONCRETE COMPACTED DENSITY (TONS/C.Y.)                                                                                                                                                                                                                                                                                                                                                                                                             | 1.80                                                            |
| C.L. DISTANCE OVER WHICH TRAFFIC IS SLOWED IN THE 0.0. (MILES)                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                            |
| C.L. DISTANCE OVER WHICH TRAFFIC IS SLOWED IN THE N.O.D. (MILFS                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                            |
| DETOUR DISTANCE AROUND THE OVERLAY ZONE (MILES)                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                            |
| OVERLAY CONSTRUCTION TIME (HOURS/DAY)                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                            |
| NUMBER OF OPEN LANES IN RESTRICTED ZONE IN 0.0.                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                               |
| NUMBER OF OPEN LANES IN RESTRICTED ZONE IN N.O.D.                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                               |
| PROPORTION OF VEHICLES STOPPED BY ROAD FOUTPMENT IN 0.D. (PERCE<br>PROPORTION OF VEHICLES STOPPED BY ROAD FOUTPMENT IN N.O.D. (PER<br>AVERAGE TIME STOPPED BY ROAD EQUIPMENT IN 0.D. (HOURS)<br>AVERAGE TIME STOPPED BY ROAD EQUIPMENT IN N.O.D. (HOURS)<br>AVERAGE APPROACH SPEED TO THE OVERLAY ZONE (MPH)<br>AVERAGE SPEED THROUGH OVERLAY ZONE IN 0.D. (MPH)<br>AVERAGE SPEED THROUGH OVERLAY ZONE IN N.O.D. (MPH)<br>TRAFFIC MODEL USED IN THE ANALYSIS | NT) 0.00<br>CENT) 0.00<br>0.000<br>35.0<br>35.0<br>35.0<br>35.0 |
| FIRST YEAR COST OF ROUTINE MAINTENANCE (DOLLARS/LANE MILE)                                                                                                                                                                                                                                                                                                                                                                                                   | 50.00                                                           |
| INCREMENTAL INCREASE IN MAINT. COST PER YEAR (DOLLARS/LANE MILE                                                                                                                                                                                                                                                                                                                                                                                              | 20.00                                                           |
| COST OF A SEAL COAT (DOLLARS/LANE MILE)                                                                                                                                                                                                                                                                                                                                                                                                                      | 900.00                                                          |
| INTEREST RATE OR TIME VALUE OF MONEY (PFRCENT)                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0                                                             |

## TABLE A9.2. EXAMPLE PROBLEM

7

.

<u>بر</u>

| -   | FOR   | THE  | 3 LAYER  | DESIGN W           | #ITH  | THE FOL              | LOWING        | MATERIA      | Ls           |            |              |          |
|-----|-------|------|----------|--------------------|-------|----------------------|---------------|--------------|--------------|------------|--------------|----------|
|     |       |      | MATERIAL | _S                 |       | COST                 | STR.          | MIN.         | MA           | X. SA      | LVAGE        | TRIAXIAL |
|     | LAYEF | COD  | E        | NAME               |       | PER CY               | CUEFF.        | <b>FEPTH</b> | DEP          | ТН         | PCT.         | CLASS    |
|     | 1     | A    | ASPHALI  | CONCRE I           | IE    | 10.00                | •44           | 3.00         | 3.1          | 00 5       | 0 • 0 0      | •50      |
|     | 2     | 8    | BASE MA  | ATERIAL<br>MATERIA |       | 5.00                 | •14           | 6+00         | 6.           | 00 5       | 0.00         | 1.00     |
| e.  |       | L    | SUDDOU   | L MAIENIA          | AC.   | 2.0V                 | 0 00<br>1 1 + | 8.00         |              | 00 5<br>00 | 0.00         | 3.70     |
|     |       |      | SVBBURA  |                    |       | 0.00                 | 0.00          | 0.00         | U • 1        | 00         | 0+00         | 2+04     |
|     | 3     | THE  | OPTIMAL  | DESIGN             | FOR   | THE MAT              | ERIALS        | UNDER C      | ONSIDE       | RATION     |              |          |
|     |       | FU   | R INITI  | AL CONSTR          | RUCTI | ON THE               | DEPTHS        | SHOULD       | BE           |            |              |          |
|     |       |      | ASF      | PHALT CON          | NCRET | Ē                    | 3.00 IN       | CHFS         |              |            |              |          |
|     |       |      | BAS      | SE MATER           | IAL   |                      | 6.00 IN       | CHFS         |              |            |              |          |
|     |       |      | SUE      | BASE MAT           | TERIA |                      | 8.00 IN       | CHES         |              |            |              |          |
|     |       | 비    | E LIFE ( | JF INE IN          |       |                      | TURE =        | •59 T        | FUKD         |            |              |          |
|     |       | 1.11 |          | SO INĈHI           | (FS)  | J<br>(Thein          | TAK T         | NOU LEV      | EL -UPA      | AFTED      |              | YEADS.   |
|     |       |      | тот      | TAL I THE          | =     | 3.(                  | ATTO T T      |              |              | ALLER      | . <u>د</u> . | 7 ILANUS |
|     |       | тн   | EHE SHOL | JLU NOT E          | SE AN | Y SEAL               | COATS.        |              |              |            |              |          |
|     |       |      | _        | -                  |       |                      |               |              |              |            |              |          |
|     |       | TH   | E TOTAL  | COSTS PE           | ER SQ | • YD• F              | OR THES       | E CONSI      | UERATIO      | ONS AR     | E            |          |
|     |       |      | IN       | TTAL CON           | NSTRU | CTION (              | :051          | _ 2          | •111         |            |              |          |
|     |       |      | 101      | TAL ROUT           | INE M | AINTENA              | NCE COS       | T            | •014         |            |              |          |
| ۲   |       |      | 101      | TAL UVERL          | LAT C | UNSTRUC              | LION CO       | 51           | •661         |            |              |          |
|     |       |      | 10       | IAL USER           |       | DURING               | TUNCTIO       |              |              |            |              |          |
|     |       |      | τοι      | TAL SEAL           | COAT  | COST                 | 1400110       | N U          | -000         |            |              |          |
|     |       |      | SAL      | VAGE VAL           | LUF   | 000                  |               | -1           | .135         |            |              |          |
| -   |       |      | TOT      | TAL OVERA          | ALL C | OST                  |               | ĩ            | •651         |            |              |          |
|     |       |      |          |                    |       |                      |               |              |              |            |              |          |
|     |       | KI J | MREP OF  | FFASTHE            | FDES  | TGNS E)              |               | FOD THE      | S SFT .      |            | 1            |          |
|     |       | ,,,0 | HUER OF  |                    |       | 10043-177            | WHI WED       | 106 181      | ، بالمرور ال |            | •            |          |
|     |       |      |          |                    |       |                      |               |              |              |            |              |          |
|     |       |      | AT THE C | OPTIMAL S          | SOLUT | ION, THE             | FOLLOW        | ING          |              |            |              |          |
|     |       |      | ROUNDARI | RESTRIC            | CTION | S ARE A              | CTIVE         |              | _            |            |              |          |
|     |       |      |          | 1. 1.              | 7E M1 | NIMUM L              | EPTH OF       | LATER        | 1            |            |              |          |
|     |       |      |          | 2. IF              | HE MI | NIMUM L              | NEPTH OF      | LATER        | 1            |            |              |          |
|     |       |      |          | 4. TH              | HE MA | ХТМЫМ І              | FPTH OF       | LAYER        | 2            |            |              |          |
|     |       |      |          | 5. 1.              | HE MI | NIMUM D              | EPTH OF       | LAYER        | 3            |            |              |          |
|     |       |      |          | 6. TH              | TE MA | XIMUM C              | EPTH OF       | LAYER        | 3            |            |              |          |
| •   |       |      |          | -                  |       |                      |               |              | -            |            |              |          |
|     |       |      |          |                    |       |                      |               |              |              |            |              |          |
|     |       |      |          |                    |       |                      |               |              |              |            |              |          |
| •   |       |      |          |                    |       |                      |               |              |              |            |              |          |
|     | Α     | SUMM | ARY OF 1 | THE BEST           | DESI  | GN FOR               | EACH CO       | MBINATI      | ON           |            |              |          |
|     |       | OF M | ATERIALS | S. IN ORE          | DERO  | F INCRE              | ASING T       | OTAL CO      | ST           |            |              |          |
| . L |       |      |          |                    | • ~   | <b>T</b> ., <b>A</b> | -             |              |              |            |              |          |
|     |       |      | DESIGN   | NUMBER             | 10    | TAL COS              | 5T            |              |              |            |              |          |
| •   |       |      | 3        | 3                  |       | 1•621                |               |              |              |            |              |          |
|     |       |      |          |                    |       |                      |               |              |              |            |              |          |
|     | T     | HE M | ATERIALS | S ASSOCIA          | ATED  | WITH EA              | CH OF T       | HE FOLL      | OWING I      | DESIGN     |              |          |
|     | N     | UMBE | RS DO NO | T HAVE A           | AT LE | AST UNE              | FEASIR        | LE DESI      | GN+          |            |              |          |

## TABLE A9.3. EXAMPLE PROBLEM

z

1

•

-

-

•

.

.

+

| LA | YEF<br>1<br>2<br>3                          | (<br> <br> <br> <br> <br> <br>                       | M<br>DUE<br>A<br>B<br>C              | TH<br>IATE<br>ASP<br>BAS<br>SUB<br>SUB            | E C<br>RIA<br>HAL<br>E M<br>BA<br>GF          | ONS<br>LS<br>N/<br>T<br>SÉ<br>RADI                                                                             | STRI<br>CONI<br>ERI<br>MA                  | UCT<br>CRE<br>AL<br>TER                      | ION<br>TE<br>IAL                                                  | P                                              | TER<br>COS<br>ER<br>4•4<br>1•4<br>1•1       | I AL<br>CY<br>0<br>0                                                                                                       | .s<br>c                                                                                     | UNE<br>STF<br>OEF<br>• •            | )ER<br>?•<br>?F•<br>14<br>11                 | ca<br>r                                        | NSI<br>MIN<br>2.0<br>3.0<br>4.0<br>0.0        | UER<br> +<br> 0<br> 0<br> 0       |                       | ION<br>4AX<br>EPTH<br>5 • 0 (<br>5 • 0 (<br>5 • 0 (<br>5 • 0 (<br>0 • 0 ( | ARE<br>- 5<br>              | ALVAG<br>PCT •<br>50 • 00<br>50 • 00<br>50 • 00<br>0 • 00 | E TF       | RIAX<br>SLAS<br>•5<br>1•0<br>3•7<br>5•6 | IAL<br>S<br>0<br>0<br>0                  |                                                                                             |
|----|---------------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|------------|-----------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|
|    | NU<br>TC<br>LE<br>W I                       | MBI<br>TAL<br>NG<br>DTI                              | н<br>- М<br>- М                      | UF<br>IUMH<br>OF<br>IF E                          | OUT<br>ER<br>THE<br>ACF                       | 'PU'<br>OF<br>Ar                                                                                               | T P<br>IN<br>NAL<br>ANE                    | AGE<br>PUT<br>YSI<br>(F                      | SD<br>MA<br>SP<br>EET                                             | ESI<br>TER<br>ERI                              | RED<br>TAL<br>OD                            | (A<br>S.E<br>(YE                                                                                                           | DE<br>IXC<br>IAR                                                                            | SI(<br>LU(<br>S)                    | 3NS<br>DIN                                   | /PA<br>G S                                     | GE)<br>(UBG                                   | RAD                               | E                     |                                                                           |                             |                                                           |            |                                         | 2.<br>12.                                | 3<br>3<br>2<br>0                                                                            |
|    | RE<br>SE<br>SE<br>M]                        | GI<br>RV<br>RV<br>NII<br>IELI                        | DNA<br>ICE<br>ICE<br>MUN<br>_ IN     | ABI<br>ABI<br>SE                                  |                                               | OR<br>Y<br>ICE<br>("P)                                                                                         | INU<br>INU<br>AHII<br>ARA                  | EX<br>EX<br>MLT                              | OF<br>Pl<br>Y I<br>ERS                                            | THE<br>ĀFT<br>NDE                              | ER<br>X P<br>P2<br>H1                       | 1111<br>AN<br>2<br>PF                                                                                                      | IAL<br>OV<br>RIM                                                                            | S<br>ERI<br>E                       | TRI)<br>_AY                                  | CTL                                            | RE                                            | ·                                 |                       |                                                                           |                             |                                                           |            | 0                                       | 1.<br>4.<br>4.<br>1.<br>4.2<br>.000      | 022500                                                                                      |
|    | 01<br>01<br>01<br>PF<br>TH                  | IE - (<br>IE - (<br>IE - (<br>IE - (<br>IE - (       | )1F<br>)1F<br>)1F<br>)KT<br>RUA      | RECT<br>RECT<br>RECT<br>ION                       | 10<br>10<br>10<br>10<br>10<br>5 1             | ) Al<br>1 Al<br>1 Al<br>1 Al                                                                                   | DT<br>DT<br>2-<br>DT<br>A R                | AT<br>AT<br>YR<br>ARR<br>URA                 | HEG<br>END<br>ACC<br>IVI<br>L A                                   | INN<br>OF<br>UMU<br>NG<br>REA                  | ING<br>AN<br>LAT<br>EAC                     | ה ה<br>ה<br>בח<br>ואך א                                                                                                    | SI<br>NO<br>100                                                                             | NAL<br>SI<br>H (                    | -YS<br>PER<br>DF<br>DF                       | 15<br>101<br>EQL<br>CON                        | PEH<br>(V<br>IVA<br>STR                       | IOD<br>EHI<br>LEN<br>UCT          | ()<br>CLE<br>T<br>IO  | VEH]<br>ES/[<br>18-#<br>N (F                                              | ICLE<br>DAY)<br>(IP<br>PERC | SZDAY<br>AXLES<br>CENT)                                   | )          | 11                                      | 137<br>137<br>0270<br>6.                 | 0<br>1<br>0<br>0                                                                            |
|    | M]<br>T]<br>T]<br>M/<br>M/<br>M]<br>A(      | NII<br>ME<br>ME<br>XII<br>XII<br>NII                 | 400<br>400<br>10<br>80<br>400<br>400 | TI<br>TI<br>TWE<br>US<br>AL<br>A<br>VV<br>A<br>TE | ME<br>RS1<br>EN<br>LOV<br>ERL                 | TO<br>BE<br>SE<br>SE<br>ALL<br>VED<br>AY                                                                       | FIU<br>EAL<br>ARL<br>ARL<br>TH<br>TH       | RST<br>EN<br>CUA<br>E P<br>ICK<br>ICK<br>M U | OVE<br>AT<br>TS<br>NES<br>NES<br>EPT                              | ERL<br>AFT<br>(YE<br>SQ.<br>SQ.<br>SQ.<br>H Q  | AY<br>ER<br>ARS<br>YU<br>INC                | (YE<br>(YE<br>IN]<br>FC<br>NT]<br>HES                                                                                      | AR<br>AR<br>ITI<br>OR<br>ITA<br>OV                                                          | S)<br>AL<br>IN<br>ERI               | OR<br>ITI<br>CON<br>-AY                      | OV<br>AL<br>STF<br>S (                         | ERL<br>DES<br>UCT                             | AY<br>IGN<br>ION<br>HES           | C();<br>; (;<br>; (   | NST<br>DOLL<br>INCH                                                       | (YE<br>_ARS<br>HES)         | ARS)                                                      |            |                                         | 2.<br>2.<br>2.<br>15.0<br>60.<br>0.      | 22220000                                                                                    |
|    |                                             | PH<br>PH<br>L<br>TO<br>TO<br>ER<br>JMB               |                                      | IC<br>STA<br>STA<br>DIS<br>CO<br>OF               | COM<br>COM<br>NCE<br>NCE<br>TAM<br>NST<br>OPE | ICRI<br>ICRI<br>ICC<br>ICE<br>IRUI<br>IN I                                                                     | ETE<br>ETE<br>VER<br>VER<br>CTI<br>LAN     | PR<br>CO<br>WH<br>OUN<br>ON<br>ES<br>ES      | ODU<br>MPA<br>ICH<br>ICH<br>ICH<br>ICH<br>ICH<br>ICH<br>ICH<br>IN | ICTI<br>ICTE<br>ITR<br>ITR<br>HE<br>RES<br>RES | ON<br>D D<br>AFF<br>OVE<br>HOU<br>TRI       | RAT<br>ENS<br>IC<br>RLA<br>RSA<br>CTE                                                                                      | E<br>IS<br>IS<br>Y<br>UA<br>ED                                                              | (T(<br>Y<br>SI<br>ZOI<br>ZOI<br>ZOI | DNS<br>(TO<br>LOW<br>NE<br>NE                | /HC<br>NS/<br>ED<br>ED<br>(M]<br>IN<br>IN      | UR)<br>(C.Y<br>IN<br>IN<br>(LES<br>0.r<br>N.C | (.)<br>THE<br>THE<br>;)           | 0<br>N                | •D•<br>•0•(                                                               | (m)<br>) • (                | (LES)<br>(MILES                                           | ;)         |                                         | 75.<br>1.8<br>0.0<br>0.0<br>0.0          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2                                                   |
|    | РР<br>РР<br>А V<br>А V<br>А V<br>А V<br>Т F | ROPO<br>IOPO<br>IERI<br>IERI<br>IERI<br>IERI<br>IERI |                                      | ION<br>ION<br>TI<br>AP<br>SP<br>SP                | OF<br>ME<br>ME<br>PRO<br>EEL                  | VI<br>ST(<br>ST(<br>DACI<br>DACI<br>DACI<br>TH<br>DACI<br>DACI<br>DACI<br>DACI<br>DACI<br>DACI<br>DACI<br>DACI | EHI<br>DPPI<br>DPPI<br>H SI<br>HROI<br>SED | CLE<br>ED<br>ED<br>DEE<br>UGH<br>IN          | S S<br>S S<br>BY<br>D T<br>OV<br>OV<br>TH                         | TOP<br>ROA<br>ROA<br>CO<br>T<br>ERL<br>ERL     | PER<br>PER<br>D E<br>D E<br>HE<br>AY<br>NAL | 9 R)<br>9 R1<br>9 11<br>9 11<br>9 11<br>9 VE<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | UAI<br>OAI<br>EN<br>EN<br>AY<br>IN  | D F<br>D E<br>T T<br>T T<br>Z<br>O<br>•<br>N | QUI<br>QUI<br>N C<br>N N<br>NE<br>D •<br>O • f | PME<br>PME<br>• D •<br>• O •<br>(MP<br>(MP    | NT<br>NT<br>(H<br>U)<br>H)<br>MPH | IN<br>IN<br>()U<br>(H | 0.[<br>N.(<br>RS)<br>DURS                                                 | D. (<br>D.U.<br>S)          | (PERCE<br>, (PER                                          | NT)<br>CEN | Τ)                                      | 0.0<br>0.00<br>0.00<br>35.<br>35.<br>35. | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|    | FI<br>IM<br>CC<br>IM                        | RS<br>ICRI<br>ST                                     | F Y<br>EME<br>UF<br>RES              | EAR<br>NTA<br>A<br>T R                            | C<br>L<br>SEA<br>ATE                          | ST<br>NCI                                                                                                      | OF<br>Rea<br>Coa<br>R T                    | RO<br>SE<br>T (<br>IME                       | UTI<br>IN<br>DOL<br>VA                                            | NE<br>MAI<br>LAH                               | MAI<br>NT.<br>S/L                           |                                                                                                                            | NA<br>DST<br>M<br>NE                                                                        | NCI<br>PI<br>ILI<br>Y               | E (<br>ER<br>E)<br>(PF                       | DOL<br>Ye A<br>RCF                             | LAF<br>R (                                    | א <mark>\$⁄ר</mark><br>100נ       |                       | E M:<br>RS/L                                                              | ILE)<br>_ANE                | MILE                                                      | .)         | 9                                       | 50.0<br>20.0<br>00.0<br>5.               | 00000                                                                                       |

#### TABLE A9.4. EXAMPLE PROBLEM

,

¥

•

# SUMMARY OF THE BEST DESIGN STRATEGIES IN ORDER OF INCREASING TOTAL CUST

|                      | 1      | 2            | З      | 4             | 5      | 6      | 7       | 8      |
|----------------------|--------|--------------|--------|---------------|--------|--------|---------|--------|
| *****                | ****** | ******       | ****** | ******        | ****   | *****  | ******  | *****  |
| MATERIAL ARRANGEMENT | ABC    | ABC          | ABC    | ABC           | ABC    | AB     | АРС     | ABC    |
| INIT. CONST. COST    | 1.022  | 1.022        | 1.055  | 1.025         | 1.022  | 1.025  | 1.055   | 1.022  |
| OVERLAY CONST. COST  | 0.000  | 0.000        | v.000  | 0.000         | 0.000  | 0.000  | 0.000   | 0.000  |
| USER COST            | 0.000  | 0.000        | 0.000  | 0.000         | 0.000  | 0.000  | 0.000   | 0.000  |
| SEAL COAT COST       | 0.000  | 0.000        | 0.000  | 0.000         | 0.000  | 0.000  | 0.000   | 0.000  |
| ROUTINE MAINT. COST  | .017   | .017         | .017   | •017          | • 017  | •017   | •017    | •017   |
| SALVAGE VALUE        | 459    | 459          | -,459  | 459           | 459    | 459    | -•459   | 459    |
| ***                  | *****  | *****        | *****  | ****          | ****** | ****** | ******* | *****  |
| ***                  | ****** | *****        | *****  | ****          | ****   | ****   | ******  | ****   |
| TOTAL CUST           | •>80   | <b>.</b> 5¤0 | .580   | • <u>5</u> 80 | •580   | .580   | •580    | •580   |
| ****                 | ***    | *****        | ****** | ****          | ****** | ****   | ***     | ****   |
| ****                 | ****** | *****        | *****  | *****         | ***    | ****   | ****    | *****  |
| NUMBER OF LAYERS     | 3      | 3            | 3      | د             | 3      | 2      | 3       | 3      |
| ***                  | ****** | ***          | ****   | ******        | ****   | *****  | *****   | *****  |
| LAYER DEPTH (INCHES) |        |              |        |               |        |        |         |        |
| D(1)                 | 4.50   | 4.25         | 4.00   | 3.00          | 2.15   | 5.50   | 3.75    | 3.50   |
| D(2)                 | 9.00   | 9.0n         | 9.00   | <b>♀₊0</b> ∩  | 9.40   | 9.00   | 9.00    | 9.00   |
| U (3)                | 4.00   | 5.00         | 6.00   | 10.00         | 11-00  |        | 7•00    | 8.00   |
| ***                  | *****  | *****        | ****   | ****          | ****   | ****** | ******  | ****   |
| *****                | ***    | ***          | *****  | *****         | ***    | ****   | *****   | ****   |
| NO.OF PERF.PERIUDS   | 1      | 1            | 1      | 1             | 1      | 1      | 1       | 1      |
| ***                  | ****   | ****         | ****** | *****         | ***    | ****** | *****   | *****  |
| PERF. TIME (YEARS)   | _      |              |        |               |        |        |         | _      |
| Τ(1)                 | 2.4    | 2.4          | 2.4    | 2•4           | 2•4    | 2•4    | 2.4     | 2.4    |
| ***                  | ***    | *****        | ****** | ****          | ***    | ***    | ***     | ****   |
| OVERLAY PULICY(INCH) |        |              |        |               |        |        |         |        |
| (INCLUDING LEVEL-UP) |        |              |        |               |        |        |         |        |
| ****                 | ****** | ****         | ****   | *****         | ****   | *****  | *****   | ****** |
| NUMBER OF SEAL COATS | 0      | r            | 0      | Q             | 0      | 0      | 0       | 0      |
| ***                  | ****** | *****        | ***    | *****         | ***    | ****   | ******  | ****   |
| SEAL COAT SCHEDULE   |        |              |        |               |        |        |         |        |
| (YEARS)              |        |              |        |               |        |        |         |        |
| ***                  | ****** | *****        | *****  | ****          | ****   | ****   | ****    | ****   |

 $\mathbf{v}$ 

X

•

.

#### SUMMARY OF THE BEST DESIGN STRATEGIES IN ORDER OF INCREASING TOTAL COST

|                       | 9            | 10     | 11     | 12     | 13            | 14      | 15     | 16     |
|-----------------------|--------------|--------|--------|--------|---------------|---------|--------|--------|
| ****                  | ****         | *****  | ****** | *****  | ****          | *****   | *****  | *****  |
| MATERIAL ARRANGEMENT  | ABC          | AB     | ABC    | АНС    | ARC           | ARC     | ABC    | ABC    |
| INIT. CUNST. COST     | 1.055        | 1.024  | 1.074  | 1.024  | 1.024         | 1.024   | ]•024  | 1.024  |
| OVERLAY CONST. COST   | <b>U•000</b> | 0.000  | 0.000  | 0.000  | 0.000         | 0.000   | 0.000  | 0.000  |
| USER COST             | 0.000        | 0.000  | 0.000  | 0.00Ú  | 0.000         | 0.000   | 0.000  | 0.000  |
| SEAL COAT COST        | 0.000        | 0.000  | 0.000  | 0.000  | 0.000         | 0.000   | 0.000  | 0.000  |
| ROUTINE MAINT. COST   | •017         | .017   | .017   | •017   | • 017         | •017    | •017   | •017   |
| SALVAGE VALUE         | -•459        | 460    | 460    | 460    | <b>-</b> •460 | 460     | -•460  | -•460  |
| ***                   | ****         | ****** | ***    | *****  | *****         | *****   | ****** | ****   |
| ***                   | *****        | *****  | *****  | ****   | ******        | *****   | *****  | ****   |
| TOTAL CUST            | •280         | .580   | •580   | •580   | • 580         | .580    | •580   | •580   |
| ***                   | *****        | ****** | ****** | *****  | ******        | ******  | ****   | ****   |
| ***                   | ******       | *****  | ****** | *****  | *******       | ****    | *****  | *****  |
| NUMBER OF LAYERS      | 3            | 2      | 3      | 3      | 3             | 3       | 3      | 3      |
| ***                   | *****        | *****  | ****** | ****   | *****         | ******* | *****  | *****  |
| LAYER DEPTH (INCHES)  |              |        |        |        |               |         |        |        |
| D(1)                  | 3.25         | 5.75   | 4.75   | 4.50   | 4.25          | 3.75    | 3.50   | 3.25   |
| (2) U                 | 9.00         | 8.25   | 8,25   | P.25   | 8+25          | 8.25    | R.25   | 8.25   |
| D(3)                  | 9.00         |        | 4.00   | 5.00   | 6.00          | 8.00    | 9.00   | 10.00  |
| ***                   | *****        | *****  | ****** |        | ******        | *****   | *****  | ****** |
| ***                   | ******       | *****  | ****** | ****** | ******        | ******  | *****  | *****  |
| NO.OF PERF.PERIODS    | 1            | 1      | 1      | 1      | 1             | . 1     | 1      | 1      |
| ****                  | ******       | *****  | ****** | ****** | ******        | ******  | ****** | ****   |
| PERF. TIME (YEARS)    |              |        |        |        |               |         |        |        |
| T (1)                 | 2.4          | 2.4    | 2.4    | 2.4    | 2.4           | 2.4     | 2.4    | 2.4    |
| ***                   | *****        | ****** | *****  | ****** | ******        | ******  | *****  | ****** |
| OVERLAY POLICY (INCH) |              |        |        |        |               |         |        |        |
| (INCLUDING LEVEL-UP)  |              |        |        |        |               |         |        |        |
| ****                  | *****        | *****  | ****** | *****  | *****         | ***     | *****  | ****   |
| NUMBER OF SEAL COATS  | 0            | 0      | 0      | 0      | (j            | 0       | 0      | 0      |
| ****                  | *****        | *****  | ****** | *****  | ****          | *****   | *****  | *****  |
| SEAL COAT SCHEDULE    |              |        |        |        |               |         |        |        |
| (YEARS)               |              |        |        |        |               |         |        |        |
| *****                 | ******       | ****   | ****   | *****  | *****         | *****   | *****  | *****  |

#### TABLE A9.4. (Continued)

.

4

# SUMMARY OF THE BEST DESIGN STRATEGIES IN ORDER OF INCREASING TOTAL COST

|                      | 17     | 18    | 19     | 20     | 21       | 22     | 23     | 24           |
|----------------------|--------|-------|--------|--------|----------|--------|--------|--------------|
| ***                  | ****   | ****  | *****  | *****  | ****     | *****  | *****  | *****        |
| MATERIAL ARRANGEMENT | ABC    | ABC   | ABC    | AB     | ARC      | ARC    | ABC    | ABC          |
| INIT. CUNST. CUST    | 1.024  | 1.024 | 1.024  | 1.025  | 1.025    | 1.025  | 1.025  | 1.025        |
| OVERLAY CONST. COST  | 0.000  | 0.000 | 0.000  | 0.000  | 0.000    | 0.000  | 0.000  | 0.000        |
| USER COST            | 0.000  | 0.000 | 0.000  | 0.00   | 0.000    | 0.000  | 0.000  | 0.000        |
| SEAL COAT COST       | 0.000  | 0.000 | v.000  | 0.000  | 0.000    | 0.000  | 0.000  | <b>9.000</b> |
| ROUTINE MAINT. COST  | •017   | .017  | .017   | •017   | .017     | • 917  | •017   | •017         |
| SALVAGE VALUE        | -,460  | 460   | 460    | 460    | -,460    | 460    | 460    | 460          |
| ***                  | ****** | ***** | ****   | ****** | ******   | ****   | *****  | ****         |
| ***                  | ****   | ***** | ****** | *****  | *****    | ***    | *****  | ****         |
| TOTAL CUST           | •280   | .590  | .580   | •581   | • 281    | .581   | •581   | •581         |
| ***                  | *****  | ****  | ****   | ****   | ******   | ****   | ****   | ****         |
| ***                  | ****   | ***** | ****   | ****** | *****    | ****   | ****   | ****         |
| NUMBER OF LAYERS     | 3      | 3     | 3      | 2      | 3        | Э      | 3      | 3            |
| ******               | ****   | ****  | ****** | *****  | ******   | *****  | *****  | ****         |
| LAYER DEPTH (INCHES) |        |       |        |        |          |        |        |              |
| D(1)                 | 3.00   | 2.75  | 4.00   | 6.00   | 5.00     | 4.75   | 4.50   | 4.25         |
| 0(2)                 | 8,25   | 8.25  | 8.25   | 7.50   | 7.50     | 7.50   | 7.50   | 7.50         |
| ( ای نا              | 11.00  | 12.00 | 7.00   |        | 4 • U (j | 5.00   | 6•00   | 7.00         |
| ***                  | ****   | ****  | ****** | *****  | *****    | ***    | ****   | ****         |
| ***                  | ****   | ****  | ****   | ****   | *****    | *****  | *****  | ****         |
| NO.OF PERF.PERINDS   | 1      | 1     | 1      | 1      | 1        | 1      | 1      | 1            |
| ****                 | *****  | ****  | ****** | ****   | *****    | ****** | ****   | *****        |
| PERF. TIME (YEARS)   |        |       |        |        |          |        |        |              |
| T(1)                 | 2.4    | 2.4   | 2.4    | 2.4    | 2•4      | 2.4    | 2•4    | 2.4          |
| ***                  | *****  | ***** | *****  | ****   | ******   | ****   | ****** | *****        |
| OVERLAY POLICY(INCH) |        |       |        |        |          |        |        |              |
| (INCLUDING LEVEL-UP) |        |       |        |        |          |        |        |              |
| ***                  | *****  | ****  | ****** | ****   | *****    | ****** | *****  | ****         |
| NUMBER OF SEAL LOATS | U      | n     | ð      | 0      | U        | 0      | 0      | 0            |
| ******               | ****   | ***** | ****** | ****   | *****    | ****   | *****  | ****         |
| SEAL COAT SCHEDULE   |        |       |        |        |          |        |        |              |
| (YEARS)              |        |       |        |        |          |        |        |              |
| ***                  | ****** | ****  | ****** | *****  | ****     | ***    | *****  | ***          |

THE TOTAL NUMBER OF FEASIRLE DESIGNS CONSIDERED WAS 993

### TABLE A9.5. EXAMPLE PROBLEM

7

h

•

4

.

.

-

٠

.

| THE CONSTRUCTION MATERIALS UNDER CONSIDERATION ARE<br>MATERIALS COST STR. MIN. MAX. SALVAGE<br>LAYER CODE NAME PER CY COEFF. DEPTH DEPTH PCT.<br>1 A ASPHALT CONCRETE 10.00 .90 3.00 3.00 50.00<br>2 B BASE MATERIAL 5.00 .45 6.00 6.00 50.00<br>3 C SUBBASE MATERIAL 2.00 .30 9.00 8.00 50.00<br>SUBBGRADE 0.00 .17 0.00 0.00 0.00                                                                                                                                   |                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| NUMBER OF OUTPUT PAGES DESIRED(A DESIGNS/PAGE)<br>TOTAL NUMBER OF INPUT MATERIALS+EXCLUDING SUBGRADE<br>LENGTH OF THE ANALYSIS PERIOD (YEARS)<br>WIDTH OF FACH LANE (FEET)                                                                                                                                                                                                                                                                                            | 3 • 21<br>2 • 2<br>12 • 0                              |
| DISTRICT TEMPERATURE CONSTANT<br>SERVICEABILITY INDEX OF THE INITIAL STRUCTURE<br>SERVICEABILITY INDEX P1 AFTER AN OVERLAY<br>MINIMUM SERVICEABILITY INDEX P2<br>SWELLING CLAY PARAMETERS P2 PRIME<br>B1                                                                                                                                                                                                                                                              | 30.0<br>4.2<br>1.5<br>4.20<br>0.0000                   |
| ONE-DIRECTION ADT AT BEGINNING OF ANALYSIS PERIOD (VEHICLES/DAY)<br>ONE-DIRECTION ADT AT END OF ANALYSIS PERIOD (VEHICLES/DAY)<br>ONE-DIRECTION 2-YR ACCUMULATED NO. OF EQUIVALENT 18-KIP AXLES<br>PROPORTION OF ADT ARRIVING EACH HOUR OF CONSTRUCTION (PERCENT)<br>THE ROAD IS IN A RURAL AREA.                                                                                                                                                                     | 1370<br>1371<br>1102700<br>6•0                         |
| MINIMUM TIME TO FIRST OVERLAY (YEARS)<br>MINIMUM TIME BETWEEN OVERLAYS (YEARS)<br>TIME TO FIRST SEAL COAT AFTER INITIAL OR OVERLAY CONST.(YEARS)<br>TIME BETWEEN SEAL COATS (YEARS)<br>MAX FUNDS AVAILABLE PER SQ.YD. FOR INITIAL DESIGN (DOLLARS)<br>MAXIMUM ALLOWED THICKNESS OF INITIAL CONSTRUCTION (INCHES)<br>MINIMUM OVERLAY THICKNESS (INCHES)<br>ACCUMULATED MAXIMUM DEPTH OF ALL OVERLAYS (INCHES)                                                          | •5<br>2•2<br>2•2<br>15•00<br>60•0<br>0•0<br>8•0        |
| ASPHALTIC CONCRETE PRODUCTION RATE (TONS/HOUR)<br>ASPHALTIC CONCRETE COMPACTED DENSITY (TONS/C.Y.)<br>C.L. DISTANCE OVER WHICH TRAFFIC IS SLOWED IN THE 0.D. (MILES)<br>C.L. DISTANCE OVER WHICH TRAFFIC IS SLOWED IN THE N.O.D. (MILES)<br>DETOUR DISTANCE AROUND THE OVERLAY ZONE (MILES)<br>OVERLAY CONSTRUCTION TIME (HOURS/DAY)<br>NUMBER OF OPEN LANES IN RESTRICTED ZONE IN 0.D.<br>NUMBER OF OPEN LANES IN RESTRICTED ZONE IN N.O.D.                          | 75.0<br>1.80<br>0.00<br>0.00<br>0.00<br>0.0<br>1<br>2  |
| PROPORTION OF VEHICLES STOPPED BY ROAD EQUIPMENT IN O.D. (PERCENT)<br>PROPORTION OF VEHICLES STOPPED BY ROAD EQUIPMENT IN N.O.D. (PERCENT<br>AVERAGE TIME STOPPED BY ROAD EQUIPMENT IN N.O.D. (HOURS)<br>AVERAGE TIME STOPPED BY ROAD EQUIPMENT IN N.O.D. (HOURS)<br>AVERAGE APPROACH SPEED TO THE OVERLAY ZONE (MPH)<br>AVERAGE SPEED THROUGH OVERLAY ZONE IN O.D. (MPH)<br>AVERAGE SPEED THROUGH OVERLAY ZONE IN N.O.D. (MPH)<br>TRAFFIC MODEL USED IN THE ANALYSIS | 0.00<br>0.000<br>0.000<br>35.0<br>35.0<br>35.0<br>35.0 |
| FIRST YEAR COST OF ROUTINE MAINTENANCE (DOLLARS/LANE MILE)<br>INCREMENTAL INCREASE IN MAINT. COST PER YEAR (DOLLARS/LANE MILE)<br>COST OF A SEAL COAT (DOLLARS/LANE MILE)<br>INTEREST RATE OR TIME VALUE OF MONEY (PERCENT)                                                                                                                                                                                                                                           | 50.00<br>20.00<br>900.00<br>5.0                        |

(Continued)

TABLE A9.5. (Continued)

2

FOR THE 3 LAYER DESIGN WITH THE FOLLOWING MATERIALS --MATERIALS COST STR. MAX. SALVAGE MIN. DEPTH PCT. PER CY COEFF. LAYER CODE NAME DEPTH ASPHALT CONCRETE 10,00 50,00 .90 3,00 1 3.00 Δ 45 6.00 2 BASE MATERIAL 5.00 6.0Q 50,00 R 8.00 SUBBASE MATERIAL A.00 3 Ĉ 5.00 50,00 0,00 .17 0.00 0.00 SUBBGRADE 0.00 THE OPTIMAL DESIGN FOR THE MATERIALS UNDER CONSIDERATION --3 FOR INITIAL CONSTRUCTION THE DEPTHS SHOULD BE ASPHALT CONCRETE 3.00 INCHES BASE MATERIAL 6.00 INCHES SUBBASE MATERIAL 8.00 INCHES THE SCI OF THE INITIAL STRUCTURE = 1.469 THE LIFE OF THE INITIAL STRUCTURE = .53 YEARS THE OVERLAY SCHEDULE IS 3.00 INCH(ES) (INCLUDING 1 INCH LEVEL-UP) AFTER .53 YEARS. TOTAL LIFE = 2.31YEARS/ THERE SHOULD NOT BE ANY SEAL COATS. THE TOTAL COSTS PER SQ. YD. FOR THESE CONSIDERATIONS ARE INITIAL CONSTRUCTION COST 2,111 TOTAL ROUTINE MAINTENANCE COST .014 .794 TOTAL OVERLAY CONSTRUCTION COST TOTAL USER COST DURING 0.000 OVERLAY CONSTRUCTION TOTAL SEAL COAT COST 0.000 -1,198 SALVAGE VALUE TOTAL OVERALL COST 1,721 NUMBER OF FEASIBLE DESIGNS EXAMINED FOR THIS SET --1 AT THE OPTIMAL SOLUTION, THE FOLLOWING BOUNDARY RESTRICTIONS ARE ACTIVE --1. THE MINIMUM DEPTH OF LAYER 1 2. THE MAXIMUM DEPTH OF LAYER 1 3. THE MINIMUM DEPTH OF LAYER 5 4. THE MAXIMUM DEPTH OF LAYER 2 5. THE MINIMUM DEPTH OF LAYER 3 6. THE MAXIMUM DEPTH OF LAYER 3 A SUMMARY OF THE BEST DESIGN FOR EACH COMBINATION OF MATERIALS. IN ORDER OF INCREASING TOTAL COST DESIGN NUMBER TOTAL COST 3 1.721 THE MATERIALS ASSOCIATED WITH EACH OF THE FOLLOWING DESIGN NUMBERS DO NOT HAVE AT LEAST ONE FEASIBLE DESIGN.

#### THE AUTHORS

Surendra Prakash Jain is a Research Engineer Assistant, working toward his Ph.D. degree, at the Center for Highway Research at The University of Texas at Austin. His engineering experience includes work with the U. P. State Irrigation Department in India, Stanford University, Brown and Root, Inc., Houston, Texas, and the Center for Highway Research at



The University of Texas at Austin. His current research efforts are primarily with (1) analysis and design of pavement management systems, (2) flexible pavement design, and (3) sensitivity analyses. He is a member of the American Society of Civil Engineers and author of several other reports.

B. Frank McCullough is an Assistant Professor of Civil Engineering at The University of Texas at Austin. His engineering experience includes work with the Texas Highway Department and the Center for Highway Research at The University of Texas at Austin. His current research is concerned with (1) systematic pavement design and (2) the evaluation

sity of Texas at Austin. His current research is concerned with (1) systematic pavement design and (2) the evaluation and revision of the Texas Highway Department rigid pavement design procedure. He is the author of numerous publications and a member of several professional

W. Ronald Hudson is an Associate Professor of Civil Engineering and Associate Dean of the College of Engineering at The University of Texas at Austin. He has had a wide variety of experience as a research engineer with the Texas Highway Department and the Center for Highway Research at The University of Texas at Austin and was Assistant Chief of

societies.



the Rigid Pavement Research Branch of the AASHO Road Test. He is the author of numerous publications and was the recipient of the 1967 ASCE J. James R. Croes Medal. He is presently concerned with research in the areas of (1) analysis and design of pavement management systems, (2) measurement of pavement roughness performance, (3) slab analysis and design, and (4) tensile strength of stabilized subbase materials.